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Abstract

We discuss some dynamical systems which are paradigmatic for
complexity.

The aim of the present paper is twofold: First, to state briefly the
state of the art and the problems unanswered until now and, second,
to open the way for the discovery of new kinds of complex dynamics.
Systems where the future is not only determined by their present state
but by part of their history and which formally can be described by
seemingly simple difference -differential equations not only play an im-
portant role in the applications e. g. of nonlinear delayed feedback but
are very suitable for numerical and substantial analytical discussion
and insight of complex dynamics. This includes new types of bifurca-
tion patterns, multi–stability of highly structured periodic orbits and
high dimensional strange strange attractors.

Subject classes: 34K13, 34K23, 39A11
∗To appear in Nonlinear Dynamics and chaos : Where do we go from here? (J. Hogan

et al. eds.), IoP Publ. (in press)
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1 Introduction: Hereditary systems

The last decades have shown the discovery of complexity in low dimen-
sional dynamical systems. Complexity shows up by phenomena like mul-
tiple steady states, limit cycles, extensive bifurcation patterns like period
doubling bifurcations, and deterministic chaos (”strange attractors”). Fa-
mous examples are the Lorentz attractor, the discrete logistic equation, the
Hénon attractor, the equations for the coupled pendula, the Mandelbrot set
[3], [30], [33].

Nevertheless and despite of the ongoing difficulties in analyzing them
[33], these systems are simple in the sense that in the real world there are
only very few things or processes which can be adequately described by two,
three or four ordinary differential equations or by one- or two-dimensional
maps. E. g. the phenomena of turbulence are generally not yet understood
via low dimensional deterministic chaos and form still a major challenge to
theoretical physicists and mathematicians.

It is often believed that the now well known bifurcation schemes or sce-
narios like e.g. pitchfork and saddle node bifurcations, Hopf bifurcation,
period doubling bifurcation or bifurcation of chaos from quasi-periodic mo-
tion, are generic in the sense that essentially no other bifurcation patterns
can generally occur. However, we will indicate that this is far from true
opening the way for more possibilities of explaining complex phenomena.

Systems with delays are very suitable for making steps forward to under-
standing complexity in higher dimensional systems since in a certain sense
they lie intermediate between low dimensional ordinary differential equa-
tions and systems which must be described by partial differential equations.
This may be illustrated by the concrete example of the hyperbolic system

is + Cvt = 0
vs + Lis = 0

with boundary conditions

v(0, t) = 0, v(s, 0) = v0(s)
i(l, t) = g(v(l, t) + E), i(s, 0) = i0(s)

modelling electric media with a tunel diode having a non-linear voltage-
current characteristic g, for details see [30]. This system can be equivalently
transformed into the seemingly simple single equation

x(t) = f(x(t− τ)), t ≥ 0, (1)

2



a so called difference equation with continuous argument or functional dif-
ference equation [30]. The positive constant τ denotes the time needed by
a signal to travel from one end of the medium to the other.

Eq.(1) appears to be nearly the same as the difference equation

xn = f(xn−1), n ∈ N (2)

where f : I → I is a map defined on some interval I ⊂ R. However, solutions
to Eq.(2) and Eq.(1) are drastically different. Eq.(2) may have a strange
attractor, the fractal dimension of which, however, is bounded above by 1.
The reason is that the state space, i. e. the space of initial conditions, is
some subset of R, and thus at most one-dimensional. One example is the
famous logistic equation where f(ξ) = λξ(1− ξ) with a constant parameter
λ ∈ [0, 4] and state space the interval [0,1]. For λ = 4 there is a strange
strange attractor with fractal dimension exactly 1; this attractor is dense in
the whole state space [0,1].

Contrarily, for Eq.(1) an initial condition is an arbitrary function ϕ :
[−τ, 0) → I, and therefore the state space is C−1([−τ, 0), I), the space of
all functions with domain [−τ, 0) and range I. Taking again the quadratic
function f(ξ) = λξ(1 − ξ) with λ = 4 there is a strange strange attractor
which in fact has dimension ∞.

Before going into details with respect to the already mentioned equations
we like to address another, ”closely” related type of equations interesting
with respect to complicated behavior.

Namely, the equations (1) and (2) have been considered as singular per-
turbation problems in the context of delay differential equations of type

ε
dx

dt
(t) + x(t) = f(x(t− 1)) (3)

in the formal limit ε → 0.
Eq.(3), the socalled Mackey-Glass equation, has found many applications

in physics, biology and economics, see e.g. [5]. The reason for the importance
of this equation in applications is that it falls under the general scheme where
the rate of change dx/dt of some time dependent quantity x(t) is the net
effect of two factors, a productive one (p) and a destructive one (d) [15]:

dx

dt
(t) = p− q.

When there is feedback, both p and q may depend on the quantity x itself.
Often, the production needs considerable time, e. g. in commodity markets
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(in particular agricultural ones [22]), in population growth, or in hormonal
systems. In such situations the production p may be a functional p(t) =
P (xt) of the history xt : (a, 0) → R, xt(s) := x(t + s) of the variable x (the
constant a being either a negative number or −∞). Similarly with q = qt.

Thus, the most general approach would be to write x(t) as a functional
of xt:

x(t) = F (xt).

For most applications the dependence on the past may be made explicit
by an integral equation of type

x(t) =
∫ t

−∞
f(x(t′ − τ))g(t− t′)dt′ (4)

where t ≥ 0, f : I → I, τ a constant delay, and g : [0,∞) → [0,∞) denotes
a weighting function (or more generally a distribution).

Taking for g the δ - distribution Eq.(4) becomes Eq.(1) which thus ap-
pears as an extreme case of (4).

In applications and for analytical reasons it is useful to consider weighting
functions g = gk of the following type: Let k ∈ N,

gk(t) := α tk−1e−αt/(k − 1)!

With such a weighting function Eq.(4) can be transformed into a system of
differential equations: Define

xi(t) :=
∫ t

−∞
f(x(t′ − τ))gi(t− t′)dt′ for i = 1, 2, . . . , k, (5)

x0(t) := α−1f(x(t− τ)).

Then because of

dxi(t)/dt = αxi−1(t)− αxi(t) for i = 1, 2, . . . , k

we arrive at the system

dx1(t)/dt = f(xk(t− τ))− αx1(t)

dxi(t)/dt = αxi−1(t)− αxi(t) for i = 2, 3, . . . (6)
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Since g = gk Eq.(4) together with definition (5) implies the identity xk = x,
and thus x obeys system (6). Vice versa (4) can be reobtained from (6) by
successively integrating the i-th equation,i = k, k − 1, . . . , 1.

We remark that system (6) represents a feedback model for the regulation
of protein synthesis introduced by [6]. In this context system (6) has been
studied later on intensively, for a review in case of τ = 0 see [27]. In
particular, it could be proved that in case of negative feedback, i. e. if the
feedback function f is monotone decreasing, system (6) has non-constant
periodic solutions provided that f is bounded and differentiable and the
equilibrium is unstable. This result could be generalized to arbitrary τ ≥ 0,
(case k = 1 [7], case k = 2 [9], any k ∈ N [23], [8]).

By forming the k-th derivative of xk(t) and using the equations of (5)
one can show that system (6), and thus also Eq.(4) with g = gk, is equivalent
to the k-th order delay differential equation

k∑

i=0

(
k

i

)
αix(k−i)(t) = αkf(x(t− τ)), (7)

where x(i) denotes the i-th derivative of x.
Eq.(7) is a special case of the very interesting class of k-th order delay-

differential equations [11]

k∑

i=0

aid
ix(t)/dti = f(x(t− τ)), ai ∈ R. (8)

Note that Eq.(1) is obtained from (8) by choosing k = 0, and Eq.(3) by
choosing k = 1. Formally Eq.(8) is in the ”vicinity” of (1), and thus also
indirectly connected to Eq.(2), if ai = εi are small numbers for i = 1, 2, . . . , k,
[8], [12]. In particular, the k–th order equation

ε dkx(t)/dtk + x(t) = f(x(t− τ)) (9)

formally approaches (1) as ε → 0.
There is a striking contrast between Eqs. (2) and (1) on the one side

and Eqs. (3) and (9) on the other side concerning what we know about
the complex behavior of solutions and bifurcation patterns. We cite here a
statement of A. N. Sharkovsky from 1986: ”In spite of the apparent simplic-
ity of Eq.(3), the investigation of it is not an easy task. For any sufficiently
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small ε, this equation can no longer possess solutions of the turbulent type,
because

ε | dkx(t)/dtk |≤ 1
ε
| −x(t) + f(x(t− τ)) | .

Thus, we arrive here at the principal question which still has no answer:
What happens with these solutions when ε > 0 and t → ∞ ? The remark
of Sharkovsky ”. . . ; unfortunately our understanding of this process leaves
much to be desired,” ([30], p. 13) still holds even in view of the recent
great progress in the analysis of equations like (3), compare [4], [18], [19],
[35], [36]. The detailed knowledge about the first class (difference equa-
tions) cannot simply be extended by continuity arguments to the second
class (differential equations) despite of the formal limit transition ε → 0
between the two classes. This impossibility has become evident by the work
of Mallet-Paret, Nussbaum, and the Russion group around Sharkovsky who
showed that there is a ”bifurcation gap” between the two classes and that
they differ drastically in their asymptotic behavior of solutions ([25],[17]).
The problems become already very difficult by the tremendous difference of
behavior between (2) and (1), as we already mentioned in the beginning and
will describe later on in more detail.

In the following sections the reader is invited onto a pathway of increasing
rank and complicatedness of equations like wandering through landscape
of different levels with different perspectives and different scenarios. The
reader should be stimulated to further considerations by our pointing to
areas where there is little insight until now.

2 Difference equations with continuous argument:
Idealized turbulence

In this section we briefly recall recent results of Sharkovsky and coworkers
concerning equations of type (1), socalled difference equations with continu-
ous argument [30],[32]. The character of their solutions is very much different
from that of the difference equation (2) despite of the strict relationship

x(t + nτ) = fn(x(t)) for all n ∈ N

meaning that for each fixed t ∈ [−τ,∞) the sequence (x(t + nτ))n∈N is a
solution of (2).

The striking difference can already be seen with the simple example
where f : [−1, 1] → [−1, 1] is given by f(ξ) = arctan(αξ) with a constant α >
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1. With this sigmoid nonlinearity (2) has two attracting fixed points and no
periodic solutions, whereas (1) has infinitely many periodic solutions (though
it has also two attracting constant solutions). The reader will easily verify
that e.g. one of these periodic solutions is obtained by choosing the initial
condition ϕ(t) = t for t ∈ [−1, 1](remember the remark above, concerning
initial conditions for (1). The corresponding solution converges, as t →
∞, to a periodic solution which in fact is discontinuous and has a pulstile
character. For embedding such solutions into a state space with suitable
metric see [30].

In general and following the classification of Sharkovsky et al. [30] Eq.(1)
has two main types of solutions:
a)relaxation type: smooth, bounded solutions, converging as t → ∞, to
discontinuous periodic solutions with finitely many discontinuity points per
period,
b)turbulent type: smooth, bounded solutions, converging as t → ∞, to
”limiting generalized solutions” having infinitely many discontinuities per
unit time interval. The frequency of the oscillations on the time interval
[nτ, (n + 1)τ ] increases towards infinity as n → ∞. (One may observe
something like this at a smooth shore (”beach”) of the ocean when a smooth
wave is breaking).

Which type occurs with a given nonlinearity f : I → J depends on the
socalled separator set D(f) := {ξ ∈ I : f i(ξ), i = 1, 2, . . . , is an unstable
trajectory of (2) }. Note that the closure of D(f) is the Julia set of f .
A solution of Eq.(1) corresponding to a continuous initial condition ϕ :
[−τ, 0) → I is of relaxation type if T := ϕ−1(D(f)) is finite, and it is of
turbulent type if T is infinite.

[30] distinguishes between three subclasses of the turbulent type:
ba) the preturbulent type where T is countable,
bb) the turbulent type where T is uncountable, but nowhere dense in I (a
”Cantor set”),
bc) the strong turbulent type where T contains cyclic intervals with abso-
lutely continuous invariant measures with respect to the map f .
In the preturbulent case the number of oscillations (alternating increase and
decrease of x(t)) on the time interval [nτ, (n + 1)τ ] increases according to a
power law as n →∞, however in the turbulent cases bb) and bc) it increases
exponentially. Moreover, on the shift sets nT = {nt : t ∈ T} the slopes of
solutions tend to infinity (in modulus).

Thus, the classifications a), ba), bb),and bc) are an indication of the
enormous richness of solution structures inherent in the deceptively simple
Eq.(1), for more details see [31] and [32]. Of course, such an equation
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is still an extreme caricature of real processes, however the fact that its
attractors may be of arbitrary high dimension makes them more suitable for
the inherent properties of turbulence than the well known low dimensional
strange attractors. It remains a challenge to study these phenomena in
detail [32].

There are two intimately related unrealistic features in Eq.(1). First,
as t → ∞, solutions become arbitrarily steep on arbitrarily small intervals,
such that asymptotically solutions become discontinuous. Second, there is
no dissipative or friction term in Eq.(1). Both of these deficits are overcome
(at least theoretically) by introducing the friction term ε dx

dt (t), thus arriving
at Eq.(3).

3 First order difference-differential equations: a
singular perturbation problem with bifurcation
gaps

There are some results which support the belief that for small ε the solutions
of Eq.(3) should be very near to the solutions of Eq.(1). E. g. if x̄ is
an attracting or repelling fixed point of f, then x(t) = x̄ is an attracting
or repelling constant solution respectively of both (1) and (3). Even the
following result holds telling that solutions to Eq.(1) and Eq.(3) can stay
arbitrarily close together for arbitrarily, but finitely long times provided the
positive ε is small enough.

Proposition 3.1 (Continuous dependence of solutions on the pa-
rameter ε for finite time intervals)[17]. Let f : I → I be continuous on
the closed interval I and let ϕ : [−τ, 0] → R be continuous. Then for each
T > 0 and for each δ > 0 there is a positive number ε∗ = ε∗(T, ϕ, κ) such
that the solution x0

ϕ of Eq.(1) and the solution xε
ϕ of Eq.(3) corresponding

to the initial condition ϕ obey

‖xε
ϕ(t)− x0

ϕ(t)‖ < δ forall t ∈ T whenever ε < ε∗.

We note that this proposition can be generalized to piecewise continuous
f if the number of jumps is finite. However, strange enough, the proposition
cannot be generalized to hold also for T = ∞. Though solutions to Eq.(3)
and Eq.(1) with the same initial condition may stay near to each other for
a very long but finite time, asymptotically they can differ substantially, e.
g. in one case they may converge to a constant and in the other case to a
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nonconstant periodic solution with an amplitude independent of ε. Solutions
to Eq.(9) can be both simpler and more complicated compared to those of
Eq.(1) and also to those of Eq.(2). This may be documented by simple
examples as follows.

Example 3.1 Let the function f : R→ R be defined by

f(ξ) =
{

a if ξ < Θ
b if ξ > Θ

(10)

where a, b, Θ ∈ R are constant parameters observing a 6= b.
Note that non - smooth nonlinearities like those in this example occur

in dynamical systems where one of the variables can only attain a finite
number of discrete values. Examples are heating or cooling machines which
are either ”on” or ”off”, electric circuits with relays which are ”open” or
”closed”, neurons which are either ”firing” or ”silent”. In fact, in some
types of artificial neural networks Eq.(3) with f as in Eq.(10) are used for
model neurons [28]. Another reason for studying systems with non-smooth
nonlinearities is that they often allow for much more and much easier math-
ematical analysis and provable results than in case of smooth nonlinearities.
Often solutions can be explicitly and exactly calculated by being piecewise
composed of solutions of linear systems.

Proposition 3.2 (Infinitely many unstable high frequency periodic
solutions) Consider Eq.(3) with ε > 0 and f given by (10) with a 6= b.
Without loss of generality assume Θ = 0. Then Eq.(3) has infinitely many
periodic solutions with pairwise different minimal periods. The countable
set of periods can be written as a sequence converging to zero. In case of
”positive feedback” (b > 0 > a) all of these periodic solutions are unstable.
In case of ”negative feedback” (a > 0 > b) the periodic orbit with the largest
minimal period is asymptotically orbitally stable, all other periodic orbits are
unstable.

A proof of this proposition was given by [1], see also [4], [17]. [1] could
not only show that most of the periodic solutions are unstable, but that the
asymptotic behavior of almost all solutions is very simple:

Proposition 3.3 Let the assumptions of Proposition 3.2 hold.

(i) Let a < 0 < b. Then almost all solutions of (3) satisfy limt→∞ x(t) = a
or limt→∞ x(t) = b .
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(ii) Let b > 0 > a. Then Eq.3 has an asymptotically stable periodic solu-
tion (with period > 2τ) and almost all solutions converge towards this
periodic solution (of course in the sense of orbital convergence).

Here ”almost all” means that the corresponding set of initial conditions is
open and dense in the state space C([−1, 0],R). A result similar to Prop.3.3
has been obtained by [35] for the equation

dx(t)/dt = f(x(t− 1)) (11)

for a rather general class of continuous functions f satisfying the condition
xf(x) < 0 if x 6= 0.

Contrarily to Proposition 3.3, which says that Eq.(3) possesses at most
two stable orbits, Eq.(1) with the nonlinearity f satisfying (10) has in-
finitely many asymptotically stable periodic solutions with pairwise differ-
ent minimal periods; note however, that the corresponding stable orbits lie
in the extended state space PC([−τ, 0), I) of piecewise constant functions
ϕ : [−τ, 0) → I.

Mixed feedback and chaos
In case of monotone feedback functions f the phenomenon of deterministic
chaos seems to be excluded. This is apparent for difference equations like (2)
and has been shown for first order difference-differential equations by [24].
There is a long history of investigations concerning the chaotic behavior of
solutions to difference equations (2) if f is non-monotone, e.g. in case of the
discrete logistic equation where f(x) = λx(1− x) with a constant λ. If one
tries to prove existence of chaos for ordinary differential equation systems
or difference-differential equations like (3) results are not easily obtained.
One of the earliest successes were presented by [34], [16] and [15] under
the simplifying assumption that f is piecewise constant or, though smooth,
near to a piecewise constant function. Recently [18], [19] succeeded to prove
existence of chaos also for smooth nonlinearities, at least in equations of
type (11). Here we just summarize some results with respect to non-smooth
functions f defined as following:

f(ξ) =





0 if ξ < 1
c if 1 < ξ < Θ
d if ξ > Θ

(12)

where the constants are assumed to obey

c > 0, Θ > 1, d < c. (13)
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We introduce the following notion of chaos which is adapted from the
definition which [20] gave for difference equations.

Definition 3.1 A difference-differential equation of type (2) is called chaotic
in the sense of Li and Yorke (”Li-Yorke-chaotic”) if

(i) there are countably many periodic solutions with pairwise different
minimal periods

(ii) there is an uncountable set S of aperiodic solutions such that

(iia) if x is a periodic solution and x̃ ∈ S then lim supt→∞ ‖xt − x̃t‖ > 0

(iib) if x, x̃ ∈ S and x 6= x̃ then
lim inft→∞ ‖xt − x̃t‖ = 0 and lim supt→∞ ‖xt − x̃t‖ > 0.

Here, as usual, xt : [−τ, 0] → R is the shift function defined by xt(s) =
x(t + s), and ‖xt‖ := sup {|xt(s)| : s ∈ [−τ, 0]}.

The following theorem has been proved by [15] after the precursor [16]
where a more complicated f (with 3 discontinuities) has been used.

Theorem 3.1 Let the function f be defined by (12) with the parameters c,
Θ and d obeying (13). Assume, moreover, that ε and c satisfy

c/(c− 1)2 + z < 1

where z is the positive root of the quadratic

z2 − (c− r − c2)z − cr = 0

with r := (c− 1) exp(−1/ε).
Then there are positive numbers µ = µ(c, ε) and d∗ = d∗(c, ε) such that
Eq.(3) is chaotic in the sense of Li and Yorke whenever Θ and d satisfy

(c− z)/(c− 1) < Θ < (c− z)/(c + 1) + µ and d ≤ d∗.

It is remarkable that, with f given by (12), neither Eq.(2) nor Eq.(1),
which is the limiting case of Eq.(3) for ε = 0, exhibit this kind of chaos,
which may happen for arbitrarily small, but positive ε.

For further results about chaos in first order differential delay equations
see [18], [19], [17].
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4 Prime number dynamics of a retarded difference
equation

If one tries to solve the difference equation with continuous argument (1) by
help of a digital computer the simplest way would be to discretize time t by
discrete values tn = nh, n ∈ N with some fixed positive step size h. If one
takes h = τ/k then the resulting discretization of Eq.(1) is [12]

xn := x(tn) = f(x(tn − τ)) = f(x(nh− kh) = f(x((n− k)h)) = f(xn−k),

i.e.

xn = f(xn−k), n ∈ N. (14)

Note that the discrete approximation (14) is independent of the value
of τ , corresponding to the fact that without loss of generality in Eq.(1) one
can assume τ = 1.

When k > 1 Eq.(14) is called a retarded difference equation. Of course,
with k = 1 we arrive again at Eq.(2) which, viewed this way, is a crude
discretization of Eq.(1).

While lying somehow in between Eq.(2) and Eq.(1) it will be of interest of
what kind the relation of Eq.(14) is to Eqs. of type (1), (2) or (3). Before we
come back to this question we will show first that the structure of solutions
of Eq.(14) may be considerably more complex in case of k > 1 than in case
k = 1.

One of the deepest results concerning the case k = 1 is the following one
by A. N. Sharkovsky which includes the famous period doubling bifurcation
and ”period three implies chaos”:

Theorem 4.1 [Sharkovsky 1964] Let f : I → R be a continuous function
defined on some interval I ⊆ R. Let the set N of natural numbers be ordered
in the following way

3 . 5 . · · · . 2 · 3 . 2 · 5 . · · · . 22 · 3 . 22 · 5 . · · · . 22 . 2 . 1. (15)

If the equation xn = f(xn−1) has a cycle with period p then it has also
cycles with period p′ for all p′ positioned to the right of p in the ordering
(15).

In the ”Sharkovsky ordering” (15) each natural number appears exactly
once, and since 3 is the most left number this theorem tells in particular
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that if there is a periodic solution with period 3 then also for each p ∈ N a
periodic solution with period p does exist (compare [20]).

We have generalized Theorem 4.1 to cover Eq.(14) for all k ∈ N [14].
For arbitrary k ∈ N the state space of Eq.(14) is the k-dimensional

cube Ik (remember f : I → I)and an initial condition is a vector x(0) =
(x−k, x−k+1, . . . , x−1) ∈ Ik. A solution of Eq.(14) corresponding to the ini-
tial condition x(0) is a sequence (xn) with n ∈ N∪{−k+1, . . . , 0}, satisfying
Eq.(14) for all n ∈ N and obeying (x−k+1, . . . , x0) = x0. A solution (xn) of
Eq.(14) is called periodic with period p ∈ N if

xn+p = xn for all n ∈ N.

Theorem 4.2 (an der Heiden & Liang [14]) Let f : I → J be a continuous
function defined on some interval I ⊂ R and with range I ⊂ R. Let k ∈ N.
If the difference equation

xn = f(xn−1)

has a cycle of minimal period p then the difference equation

xn = f(xn−k) (16)

has cycles with minimal period p′ for all numbers p′ ∈ Sk(m) whenever
Sk(m) is either equal to Sk(p) or to the right of Sk(p) in the ”Sharkovsky
sequence of order k” defined by

Sk(3) . Sk(5) . · · · . Sk(2 · 3) . Sk(2 · 5) . · · · . Sk(22 · 3) . Sk(22 · 5).

. · · · . Sk(22) . Sk(2) . Sk(1).

Here Sk(p) denotes a certain set given by

Sk(p) :=
{ {1} if p = 1
{l · p | l ∈ N, l divides k and (k

l , p) coprime } for p ∈ N\{1}
If f has more than one fixed point then Eq.(16) has also cycles with minimal
period p′ for all p′ ∈ Sk(∗) := {l | 2 ≤ l ≤ k, l divides k}.

Of course, a pair(m,n) of natural numbers is called coprime if 1 is the
only common divisor of m and n. For illustration of this theorem we choose
the following example.
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Example 4.1 Let k ∈ N be a prime number. Then l divides k if and only if
l = 1 or l = k; moreover (k

l , p) is coprime if and only if p is not a multiple
of k. Thus for p ∈ N, p > 1 we have

Sk(p) =
{ {kp} if p is a multiple of k
{p, kp} if p is not a multiple of k.

Thus, e.g. the Sharkovsky sequence of order k = 11 is

{3, 33} . {5, 55} . . . . . {9, 99} . {111} . {13, 143} . . . . . {2 · 3, 2 · 3 · 11}
. . . . . {4, 44} . {2, 22} . {1, 11}.

It follows from this ordering that if xn = f(xn−1) has for example a period 4
cycle, then xn = f(xn−11) has cycles with minimal period 1, 11, 2, 22, 4, and
44.

The following theorem tells something about the number of periodic
orbits (”cycles”) of (16).

Theorem 4.3 (an der Heiden & Liang [14]) Let M, N ⊂ R, f : M → N ,
and let S = {s1, . . . , sp} be a cycle of minimal period p of the difference
equation xn = f(xn−1).

Let k ∈ N\{1}. Then the number N (p, k) of periodic cycles of the dif-
ference equation

xn = f(xn−k)

which obey xn ∈ S for all n ∈ N is exactly given by

N (p, k) =
1
p
·

∑

i∈A
(p)
k

pi

i
Υ(

k

i
) ,

where A
(p)
k := {i ∈ N | i divides k and (k/i, p) coprime },

Υ(m) :=





1 if m = 1 ,
κ∏

ι=1

mι−1
mι

if m ∈ N\{1} and {m1, . . . ,mκ}
is the set of pairwise different prime factors of m.

Example 4.2 Let k = 11 and xn = f(xn−1) have a 4–cycle {s1, s2, s3, s4}.
Then A

(p)
k = A

(4)
11 = {i ∈ N : i divides 11 and (11

i , 4) coprime } = {1, 11}.
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Thus

N (p, k) = N (4, 11) =
1
4
(Υ(11) +

411

11
Υ(1)) =

10
11

+
410

11
= 95326 = ( number of periodic cycles of xn = f(xn−11)

with xn ∈ {s1, s2, s3, s4} for all n ∈ N).

Proposition 4.1 Let the equation xn = f(xn−1) have a strange attractor
with Hausdorff dimension H. Then for each k ∈ N the equation xn =
f(xn−k) has a strange attractor with Hausdorff dimension k ·H.

5 Second order non–smooth difference–differential
equations

We now turn to the case k = 2 of Eq.(9):

d2x(t)/dt2 = f(x(t− τ))− αx(t), (17)

where α > 0.
Without loss of generality we assume α = 1. Then (17) can be trans-

formed into the system

dx(t)/dt = y(t)
dy(t)/dt = f(x(t− τ))− x(t).

(18)

Let us first consider the situation of non-smooth feedback with f defined
by (10). Without loss of generality a = 1/2 and b = −1/2, thus there remain
just the two parameters τ and Θ. An initial condition of (18) is a pair
(ϕ, y0) ∈ C1([−τ, 0],R)×R such that ϕ′(0) = y0. Solutions (x(t)), y(t)), t ≥
0, of (18) can be represented as continuous trajectories t → (x(t), y(t)) in the
x-y-plane (R2). If f is of type (10) and if, moreover, the set {t : ϕ(t) = Θ}
is finite then these trajectories are piecewise composed of arcs (”sectors”)
of circles having center at either (a, 0) or (b, 0), e.g. the center is (a, 0)
for all t ∈ [t1, t2] if for all t ∈ (t1 − τ, t2 − τ) the inequality x(t) < Θ is
satisfied. Note that the angular length of the arc associated with [t1, t2] is
just t2 − t1, because the angular velocity of the trajectory point (x(t), y(t))
is always 1, independent of the varying radii of the arcs which make up the
trajectory. For the situation of negative feedback the following theorem, a
proof of which can be found in [2], shows that for k = 2 in (9) there are
substantially more periodic solutions than in the case k = 1 in (9).
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Theorem 5.1 Let f be given by (10) and let a = 1/2 and b = −1/2 (which
can be assumed without loss of generality whenever b < a). Let Θ ∈ [0, 1/2].
Then

(i) for each n ∈ N and for each τ ∈ (0, 2nπ) System (18) (and thus also
Eq.(17)) has a periodic solution with minimal period τ/n.

(ii) for each n ∈ N, n odd, and for each τ ∈ (nπ, 2nπ) System (18) (and
thus also Eq.(17)) has periodic solutions with minimal period 2τ/n.

Multistability of periodic orbits In [2] a bifurcation scheme for these
periodic solutions is described, and it is shown that, contrary to the first
order case (k = 1) in Eq.(9), there may coexist more than one asymptotically
orbitally stable periodic orbit for fixed values of the parameters τ and Θ.

Chaos. We still consider System (18), however now with a mixed feed-
back nonlinearity given by

f(ξ) =





a if ξ < Θ1

b if Θ1 < ξ < Θ2

c if ξ > Θ2

(19)

with constants Θ1 < Θ2, a < b, c < b. Without loss of generality we assume
that

α = 1, Θ1 = 0, a = −1/2, b = 1/2, c < 1/2. (20)

Hence, the only free parameters are τ, Θ2, and c.
A proof of the following theorem can be found in [13].

Theorem 5.2 Let the function f be given by (19). Without loss of gener-
ality let the parameters α, Θ1, a, b, and c satisfy (20). Let, moreover, the
parameters τ and Θ2 obey the conditions

0 < τ < π/2,

(1 + cos
τ

2
)/2 < Θ2 < 1,

1 + (2Θ2 − 1) cos τ > 2
√

Θ2(1−Θ2)

√
sin2 τ +

1− cos τ

1 + cos τ
.

Then there are numbers c1 = c1(τ, Θ2) and c2 = c2(τ, Θ2), c1 < c2, such
that Equation (17) is chaotic in the sense of Li and Yorke whenever the
parameter c satisfies c1 < c ≤ c2.
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Thus, we have learned that the equation (3) displays different realms of
behavior for k = 0, 1, and 2, no matter how large ε is. For k > 2 nearly
nothing is known.

Outlook: Though we have definitely not covered all of the literature about
the kind of equations considered here, it is hoped that nevertheless the reader
has got the impression that the pathway we followed opens the perspective
to many further very interesting investigations with the promise that, in
the spirit of Sharkovsky’s word at the beginning, there can be discovered a
still much richer realm of fascinating phenomena than we already know. In
particular many new forms of bifurcations patterns and of high dimensional
strange attractors lie ahead.

Acknowledgement: I thank M.–L. Liang for supporting me very much in
the preparation of this manuscript.
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