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Abstract

The Intra Venous Glucose Tolerance Test (IVGTT) is a simple and established experimental procedure in which a challenge bolus of glucose is administered intra-venously and blood glucose and insulin concentrations are then frequently sampled. The modeling of the measured concentrations has the goal of providing information on the state of the subject's glucose/insulin control system: an open problem is to construct a model representing simultaneously the entire control system with a physiologically believable qualitative behavior. A previously published single-distributed-delay differential model was shown to have desirable properties (positivity, boundedness, global stability of solutions) under the hypothesis of a specific, square-wave delay integral kernel. The present work extends the previous results to a generic non-negative, square integrable normalized kernel. The new model describes the rate of glucose concentration variation as due to insulin-dependent and insulin-independent glucose tissue uptake, as well as to constant liver glucose production. The rate of variation of plasma insulin concentration depends on insulin catabolism and on pancreatic insulin secretion. Pancreatic insulin secretion at time t  is assumed to depend on the earlier effects of glucose concentrations, up to time t (distributed delay). We consider a non-negative, square integrable normalized weight function    on (+ =[0, () as the fraction of maximal pancreatic insulin secretion at a given glucose concentration. No change in local asymptotic stability is introduced by the time delay. Considering an appropriate Lyapunov functional, it is found that the system is globally asymptotically stable if the average time delay has a parameter-dependent upper bound. 
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Introduction

The homeostasis of glucose, involving the secretion of its controlling hormone insulin by the pancreas, has been the object of several mathematical models over the past thirty years QUOTE "1,2,3,4,5,6,7,8,9,10,11,12,13" 
1,2,3,4,5,6,7,8,9,10,11,12,13
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. One of the goals of this modeling effort is the measurement of the degree to which a given subject is able to accommodate a load of glucose, by means of an increase in peripheral tissue glucose uptake driven by an increase in the plasma concentration of insulin. The lack or insufficiency of this normal mechanism is termed “insulin resistance” and has an increasingly recognized importance in the pathogenesis of conditions like diabetes, obesity, and cardiovascular disease QUOTE "14,15,16" 
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The Intra Venous Glucose Tolerance Test (IVGTT) is an experimental procedure in which a subject at rest is administered a bolus amount of glucose by injection into an arm vein, and the subject’s blood glucose and insulin concentrations are then measured repeatedly over a period of time, customarily three hours. The procedure is easy to perform, minimally invasive, and yields a rich data set.

For the analysis of the data obtained with an IVGTT, a recently published delay differential model QUOTE "17" 
17
 has been shown to allow simultaneous estimation of both insulin secretion and glucose uptake parameters, to have positive, bounded solutions, and to be globally asymptotically stable around the pre-injection equilibrium blood glucose and insulin concentrations.

The present work extends the scope of the previously published model by introducing a generic weight function    in the delay integral kernel for the pancreatic response to glucose, in place of the previously used specific rectangular weighting function (constant over a finite interval, zero otherwise). 

The analytical demonstration of an appropriate qualitative behavior for this generic model, under mild requirements for   , is the departure point for the subsequent experimental and numerical determination of an optimal shape for    . This shape should best represent the pancreatic sensitivity to circulating glucose in a single subject or, in the average, over a class of similar subjects. Under mild assumptions, this optimal    found for each subject would in every case give rise to solutions with desirable global qualitative properties.

Methods

The dynamic model of the glucose-insulin system to be studied is:
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where

t     
[min] 
is time;

G
[mg/dl] 
is the glucose plasma concentration;  

Gb
[mg/dl] 
is the basal (preinjection) plasma glucose concentration; 

I
[pM] 
is the insulin plasma concentration; 

Ib
[pM] 
is the basal (pre-injection) insulin plasma concentration; 

b0
[mg/dl] 
is the theoretical increase in plasma concentration over basal glucose concentration at time zero after instantaneous administration and redistribution of the I.V. glucose bolus; 

b1
[min-1] 
is the spontaneous glucose  first order disappearance rate constant; 

b2
[min-1] 
is the apparent first-order disappearance rate constant for insulin; 

b3
[pM/(mg/dl)] 
is the first-phase insulin concentration increase per (mg/dl) increase in the concentration of glucose at time zero due to the injected bolus;  

b4
[min-1 pM-1] 
is the constant amount of insulin-dependent glucose disappearance rate constant per pM of plasma insulin concentration; 

b6
[min-1 pM/(mg/dl)] 
is the constant amount of second-phase insulin release rate per (mg/dl) of average plasma glucose concentration per unit time;

b7
[(mg/dl) min-1] 
is the constant increase in plasma glucose concentration due to constant baseline liver glucose release.

For ease of comparison with the previous model QUOTE "17" 
17
, the same parameter names have been maintained. The rectangular interval width  b5  relative to the previous model’s integral kernel has therefore disappeared from the present formulation.

he weight function  (s)  is a non-negative square integrable function on  (+ = [0, ()   such that  
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 represents the average time delay. 

The above model describes glucose concentration changes in blood as depending from spontaneous, insulin-independent net glucose tissue uptake, from insulin-dependent net glucose tissue uptake and from constant baseline liver glucose production. The term "net glucose uptake" indicates that changes in tissue glucose uptake and in liver glucose delivery are considered together.


Insulin plasma concentration changes are considered to depend from a spontaneous constant-rate decay, due to insulin catabolism, and from pancreatic insulin secretion. The delay term refers to the pancreatic secretion of insulin: effective pancreatic secretion (after the liver first-pass effect) is considered up to time t. 


If VG [ml/kgBW] is the volume of distribution of glucose,  H [kg] the body weight of the experimental subject and DG [mg] is the dose of injected glucose, then 
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The model’s free parameters are only five (b0 through b
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To these five free parameters, the number of free parameters necessary for the specification of    must be added. For instance, if one were to take    as a normalized difference of exponentials,  
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 ,  with   >  ,  then two more parameters would be necessary for a complete description of the time courses of glucose and insulin in a given subject.

Some  Preliminaries

Let us consider 
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 EMBED Equation.3  [image: image23.wmf]is defined as: 
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Initial conditions for (1-2) are 
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According to Kuang QUOTE "18" 
18
 and adopting the same nomenclature as Beretta and Takeuchi QUOTE "19,20" 
19,20
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 being a given function on Br. The system (1-2) with the given initial conditions can then be written as the initial value problem for the autonomous Retarded Functional Differential Equations (RFDE)
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 EMBED Equation.3  [image: image37.wmf](

)

.

t

xfx,t

+

=Î

R

,  
[image: image38.wmf](

)

(

]

0

xs,s,0

=jÎ-¥

,


[image: image39.wmf]
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Here we will be concerned with the stability properties of (1-2) with the initial value 
[image: image42.wmf]r

B,t0

jÎ=

. Owing to the biological meaning of (1-2), consider only the interior equilibrium; in the following, center (1-2) on the equilibrium by the change of variables 
[image: image43.wmf]r

B

jÎ

 at 
[image: image44.wmf]0

t

=

.

It is easy to check that f is locally lipschitzian QUOTE "21" 
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, i.e., there exists 
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Thirdly, positive invariance of 
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Before discussing the stability of the system, let us suppose that f(0) =0, 
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(b) If, in addition to (a), 
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(c) Suppose that (a) holds and there exists 
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Since our system represents an autonomous RFDE, 
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Results

I. Stability of the dynamic model


It can be shown that the dynamic model admits one and only one equilibrium point with positive concentrations, (Gb , Ib).  The proof  of the following propositions can be obtained in a similar way as in De Gaetano and Arino QUOTE "17" 
17
.

Proposition I: The solutions {G(t), I(t)} are positive and bounded.

Proposition II: The time derivatives of the solutions are bounded.


In the following, we try to show that any solution to the original system converges to (Gb, Ib) and that the system is stable, indeed asymptotically stable.

(a) Local stability analysis:

Consider the linearized system around  the interior equilibrium (G*, I*) by substituting 

u1 (t) = G(t) - G* ,   u2 (t)= I(t) -  I*  ,    in Eqs.(1-2),  obtaining
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The corresponding characteristic equation is
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Since all parameters are positive and the Laplace transform involved in the characteristic equation is positive, the real roots are negative. Secondly,  it is observed that   
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 cannot be a root of the characteristic equation since 
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So the only possibility for instability is through a Hopf bifurcation: we have to check QUOTE "23" 
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. Hence there is no possibility of stability switching. So the system is always locally asymptotically stable.

(b) Global stability properties around the interior equilibrium

Before proceeding with the demonstration of global stability, we rearrange the system by substituting 
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Adding all above inequalities and  choosing  
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Note that the coefficients of  
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It is therefore sufficient to choose 
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  to have negativity of the derivative of  the considered Lyapunov functional. Theorem 2 then follows immediately:

Theorem 2: If the average time delay  
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,  then the system (1-2) is globally asymptotically stable.

Proof:   It can be easily checked that above mentioned Lyapunov functional satisfies all the conditions of  Theorem (1).  This completes the proof.

Discussion

The model in the present work goes one step further, with respect to the already published model with square-wave delay kernel QUOTE "17" 
17
, towards providing a tool which the diabetologist may consider useful in the experimental evaluation of the homeostatic control of glycemia. 

The physiologic meaning of the delay kernel reflects the sensitivity of the pancreas to the concentration of glucose in circulating blood: the pancreas will output insulin, at a given time t, at a rate proportional to the suitably weighted average of the past blood glucose concentrations, which is related to the glucose concentration in interstitial fluid to which the pancreatic -cells have been exposed to in the past. Even assuming instantaneous equilibration of arterial glucose concentrations with pancreatic interstitial fluid, the chain of events leading from the increased glucose signalling on membrane receptors, to the resulting secretion of active insulin from the beta-cells, takes time. The interactions among different steps of a complex biochemical and cellular transport chain within the pancreatic cell make the hypothesis of a single discrete delay less plausible than that of a distributed delay, where the concentrations of glucose at different times in the past have different relevance to the present insulin secretion rate. 

The first approach to a workable model had been simply to hypothesize that glucose concentrations were uniformly effective throughout an interval of time up to the present. This primitive hypothesis can now be substituted with a more realistic general mechanism, where the weighting function    is subject only to mild integrability conditions.

The demonstration of local and global asymptotic stability of the model for such a generic   paves the way to the experimental determination of its shape, knowing that it can reach back to minus infinity and that any reasonable shape is admissible without prejudice to the model’s asymptotic behavior. It is to be expected that different patient populations will show a different shape of the kernel function: normal individuals, with a prompt and appropriate insulin response to hyperglycemic stimuli will likely have a promptly rising, promptly falling    curve;  NIDDM (Non Insulin Dependent Diabetes Mellitus) subjects, with a sustained insulin response to moderately hyperglycemic stimuli, will probably have persistently elevated   for long times in the past; IDDM (Insulin Dependent Diabetes Mellitus) subjects, with poor or absent pancreatic response to circulating glucose, will in all likelihood have  small long times. Suitable parametrization of    may offer the possibility of differentiating between patient populations by means of experimental parameter identification.

This approach to the numerical quantification of the homeostasis of the glucose-insulin system from the mathematical modelling of the IVGTT has the advantage of explicitly representing the two arms of the whole system together (insulin sensitivity of tissues and pancreatic sensitivity to circulating glucose), allowing the eventual simultaneous fitting of glucose and insulin concentration data.

While the number of parameters with respect to the previous model appears to be reduced by one, the kernel    has in fact not been represented at all in a functional form with respect to elapsed time: its representation could be done in several fashions compatible with the general notion of an increasing then decreasing pancreatic sensitivity to glucose at progressively increasing times in the past. The initial increase would depend on the necessity to activate intracellular mechanisms, the subsequent decrease to a declining effect of past glucose stimuli on present pancreatic performance. A difference of exponentials or a 2nd degree gamma-function would both be compatible with this general shape. In particular, the gamma-function approach 
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 could introduce a single  new parameter   , without undue a-posteriori identification difficulties. 
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