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Abstract

These lecture notes give an introductorial review to the subject of
Numerical Solution of Ordinary Differential Equations (ODEs) and Delay
Differential equations. The emphasis is in the more mathematical aspects
and numerical experiences illustrating the different issues will be present
in the corresponding lectures.

1 Introduction

We will consider in these lecture notes the numerical solution of the initial value
problem for a system of ordinary differential equations of the form

y =f(z,y), a<z<b, y(a)=A, (1)

with y = [y%,...,947, f(z,y) = [f(z,y),.-., fU(z,y)]T, and a given initial
data A = [A',...,AYT in R?. When we will refer to problem (1) we will
always assume that f : [a,b] x R? — IR? is well defined and continuous in
[a,b] x IR? and that satisfy a Lipschitz condition with respect to y in [a, b] x IR?
with Lipschitz constant L. These conditions are sufficient to guarantee the
existence of a unique solution y(x) of (1) in [a, b] (Theorem of Picard).

All the numerical methods we will study for the problem (1) proceed in a
step-by-step manner by computing successively numerical approximations y,, &
y(z,),n=0,1,..., N to the values of the solution y(z) of (1) in a discrete set
of nodes

a=z9 <211 <x2<...<xTN =b. (2)

We refer to the sequence {y,}Y o as the numerical solution. Typically the
numerical method is defined recursively by a rule (difference equation) that
generates a numerical value y, 41 using k > 1 consecutive previously computed
numerical approximations y,—;,j = 0,1,...,k — 1. We say then that we have
a k step method.

One-step methods start with an initial value yo & A and then generate an
approximation y; to the value of the solution y(z;) at = = z;. We say that
the numerical solution has been advanced one step of length hy from z¢g = a to
1 = xg+ho- This process is repeated again and again to advance the numerical
solution with step sizes hp,n =1,...,N — 1, from & = x,, t0 Tp41 = xp, + hp,
n=1,..., N —1, respectively until we get zy = b. For a k step method, k£ > 1,
we also say that the method advances one step of length h,, := 2,41 —2, when we



compute y, 41 in terms of the k previous approximations y¥,,,¥n—1, .-, Yn—k+1-
A Ek-step method needs k starting values yo,y1,...,¥kx—1 to be well defined.
Usually yo ~ A, but some additional procedure must be provided to get the
starting values y1,...,¥Yk—1-

An important situation is when the numerical method advances the solution
with a constant step size h. Then we say that the grid

b—a

N )
is uniform and that h is the diameter of the grid. This is usually an academic
situation because modern codes take advantage of the possibility of to change
the step size h, as the numerical integration of the problem is progressing to
adapt the numerical solution to the local properties of the problem. For non
uniform grids, the diameter h of the grid is also defined by

Tp=a+nh, n=0,...,N, h=

h =max(hg,h1,...,hn—1) = max hy,.
0<n<N-1

The Euler method is a first example of a numerical method for (1) and is given
by the formula
Yo+l =Yn + hnf(2n,y,), n=0,...,N—1. (3)
The implicit Euler method is defined by the formula
Ynt+1 =Yn + haf(@ni1,¥nt41), n=0,...,N -1, (4)

and requires to solve at each step a nonlinear system of equations for the nu-
merical solution y, ;. In this case, the existence of the numerical solution is
not a trivial problem. Other examples of one-step methods will be shown in
next sections.

2 One-step methods for Ordinary Differential
Equations

2.1 The Taylor series method

The Taylor series methods arise quite naturally for solving numerically the sys-
tem of ordinary differential equations (1). Starting with a numerical approxi-
mation (z,,y,) they approximate the local solution u(z) given by

ll’ = f(x,u), T > Iy, u(a:n) =Yn, (5)

by truncation after the h” term of the Taylor series expansion of u at z = .
An example of Taylor series method of first order is the Euler method (3). We
get a second order formula by retaining through terms in h?

2
U(xn-i—l) RyYntl1 =¥Yn + hul(xn) + ?ll”(.’lin),
and in general,

hP
Yot1 = Yo+ h'(w0) + -+ —u?(en),



where u®) denotes the derivative of order k of the local solution u. In principle
this method is straightforward but the difficulty of obtaining and computing
derivatives of high order of u by recursive derivation of the right hand side of
the system of ordinary differential equations has restricted the popularity of the
Taylor series scheme for solving numerically differential equations. For example,
for the autonomous scalar case y' = f(y),

v = f'(y) f(y),
y" = f") @)+ ) f') fly), ete.

and the algebra becomes more cumbersome for systems. A second issue from
the computational efficiency point of view is that the cost per step of a high
order Taylor series method is very expensive in terms of number of evaluations
of f and some of their derivatives.

2.2 Runge-Kutta methods

The class of the Runge-Kutta methods is the most important class of one-step
methods for the numerical solution of ordinary differential equations. They were
introduced by Runge and Kutta a century ago although their major development
has ocurred only since 1960, following the work by Butcher. These methods can
be well motivated by using quadrature rules to approximate the integral form
for the system satisfied by the local solution at z = z,,

Tnt+h
(zy + h) = u(z,) + / £(z, u(z))dz. (6)

Tn

For example, the Euler method is obtained if we use the rectangle quadrature
rule based at x = x,, and the implicit Euler methods arises if we use the rect-
angle quadrature rule based at x = z,11. By using the trapezoidal quadrature
rule we obtain the implicit method

h
Yn+1 =¥n + §(f($n: Yn) + f(-rnJrl: yn+1))7 (7)

that is called the trapezoidal formula. In general, when the integral in equation
(6) is approximated by a quadrature rule of order p + 1

/ " sty = hzs: bid(zm + cih) + O(hPHY), (b — 0) (8)

n i=1

we obtain a formula

W(zn +h) =yn+hY bz, + cih,u(z, + cih)) + O(RP), 9)

i=1

that in principle does not define a numerical method because requires unknown
values u(z,, + ¢;h),i =1,...,s,(if ¢; # 0), of the local solution u. However, the
identity
Tp+tcih
u(zy, + ¢h) = u(zy,) + / f(x,u(z))dx (10)

n



suggests to use again a quadrature rule for obtaining approximations Y; to
u(z, + c;h), i = 1,...,s. The key for this procedure is that the quadrature
rule used to obtain the approximations Y;,i = 1,..., s, does not need to be of
the same order that the formula (8) to get the order p + 1 in (9). With this
procedure it is possible to obtain some of the low order RK methods, as for
example, the method of Heun or improved Euler method

h
Yn+1 =Yn + §(f(mn; yn) + f(xn + ha Yn + hf(xna yn)) (11)

or the midpoint rule or modified Euler method

1 1
Yn+1 =¥n + hf(wn + EhaYn + §hf($na3’n))- (12)

All the explicit formulas we have obtained above have the following structure

S
Yo = Yn+h D bif(z, +cih, X)), (13)
i=1
i—1
Y, = yn—}—hZaijf((En—l-cih,Yj), i=1,...,s,
j=1

that defines a general explicit Runge-Kutta method of s stages. The quantities

Y;,i=1,...,s, are called inner stages of the method and the method is com-
pletely defined by the b;,¢;,i = 1,...,s, and a;5,1 =1,...,5,j =1,...,i — 1.
The parameters ¢;,7 = 1,...,s, are also called abscises of the method. It is

also classical the notation

Yni1 = Yn+h» bk,
i=1
i—1
k; = f(xn+cih,yn+h2aijkj), 1=1,...,s,
Jj=1

for a explicit RK method of s stages. The term explicit is applied to this kind of
formula because each Y;,7 =1, ..., s, depends only on the previously calculated
Y;,j =1,...,i— 1 rather than all the other Y values. Explicit Runge-Kutta
methods are very easy to code and they only require for each step s evaluations
of the function f.
It is usual to display the coefficients of a Runge-Kutta method in the form

of the following array

C1 0

Co | 21 0

(14)
Cs | Gs1 Qg2 -+ 0
by by -+ by
called Butcher’s array of the method.
An explicit Runge-Kutta method can be written in the form
Ynt1 = Yn + hn® (20, Yn, hn), Yo given (15)



with the increment function

S
¢($7 Yy, h) i=h Z blf(x’n + Cih, Yl)a
i=1
where the dependence of ® on y is through the recursive formulas that define
the inner stages Y;,7 = 1,...,s of the method. If f(x,y) satisfy a Lipschitz
conditions with respect to y with Lipschitz constant L it is easy to check that
® also satisfied a Lipschitz condition with respect to y with Lipschitz constant

L=1L Z |b;] + hLZ |bsas;| + h*L? Z |biazjajk| + -+

i i,J 1,5,k

2.3 General RK methods
General Runge-Kutta methods of s stages are defined by the formulas

S
Yo = Yn+h D bif(z, +cih, X)), (16)
i=1
S
Y, = yn—}—hZaijf((En—l-Cih,Yj), i=1,...,s.

j=1

The RK method depend on the parameters b;,c;, a:5,4,5 = 1,...,5, and the
Butcher array of the method is now

C1 | 11 Q12 a1s
Co | 21 (22 azs
c| A
= ; (17)
Cs | Gs1 (g2 Ass b”T
by by - b

where we have introduced for a more compact notation the vector of weights
b? = [by,...,b,], the vector of abscises ¢ = [c1,...,¢s], and the matrix s X s
A = (aij)i j—1- Generally, the formulas (16) correspond to an implicit method
because the equations for the inner stages form a nonlinear system of s x d equa-
tions for the s x d components of the vectors Y;,7 =1,...,s. Some decoupling
of the equations is obtained if a;; = 0 when j > i (i.e. A is lower triangular)
because then the system is reduced to s different nonlinear systems one for each
vector Y;,i = 1,...,s. If A is strictly lower triangular then the RK method is
explicit.

For implicit RK methods the existence of the numerical solution {y, }*, is
not trivial . Typically, a standard argument of fixed point iteration can prove
that the nonlinear system

S
Yi=yn+hY aif(zn+chY;), i=1,...s. (18)

j=1



has a unique solution if the step size h is enough small, more precisely if

hL gllaxz laij| < 1, (19)

j=1

where L is the Lipschitz constant of the function f with respect to y.

Implicit RK methods are necessary in some situations. For example, im-
portant classes of problems in the applications are stiff, and for them stability
considerations preclude the use of explicit RK methods. Moreover, these prob-
lems have a very large Lipschitz constant L and for them the condition on the
step size (19) is too much demanding. Therefore, the nonlinear equations of the
method for each step must be solved with some variant of the Newton’s method.

2.4 Theory of convergence for one-step methods

We illustrate the main concepts with general explicit one-step methods of the
form

Ynt1 =Yn + hn® (20, Y0, hn), Yo dado . (20)
Here @ is a continuous function of its arguments such that
1 (20, Y, n) = B(@n, ¥, ha)l| < Lllyn — 5 l- (21)

Also we assume that ® = 0 when the function f = 0.

Given an initial approximation yo ~ A let {y,}"_, be the numerical solution
computed with the method (15) stepping from zo = a to x = b with successive
step sizes hg,h1,...,hx—1. We introduce the global errors in the numerical
solution as the differences

e, =y(xn) —yn, n=0,...,N, (22)

between the values of the exact solution y(z) at the nodes x,, = ©o + ho +--- +
hp—1,m =0,...,N, and the corresponding numerical approximations given by
the method. We define the magnitude of these errors by the quantity

— 23
s [y(en) =l (23)
where || - || is a norm in IR, and we introduce the discretization parameter h :=

maxo<n<N-1 hn, representing the diameter of the discrete grid. We consider
successive numerical integrations of the problem each time on finer discrete
grids
_ .h h b ,_ h h
a=af <zt <---<ak, =b, h:= érilg)&h(a:i -z )
with y — A and Nj, — oo, h — 0.

Definition 2.1 The method (15) is said to be convergent if for each initial value
problem (1)

i, max ly(zn) = yall = 0. (24)

when yo(h) = y(x0). The method is said to be convergent of order p if, assuming
that yo(h) — y(xq), this is the greater integer such that

_ - p +
Jmax [Iy(ea) =yl = O7),  (h—0") (23)

for all problems (1) with £ € CP, .



Given a numerical approximation y,, to y(z,), the difference between the
local solution at x = z,,4+1 and the numerical approximation y, 1

el 11 = u(anrl) —Ynt1 = u(anrl) —Yn— hn(b(xn:Ym hn) (26)

is called the local error of the method at © = xy41. The method is of order p if
the local errors at each grid point are of order p+ 1, i.e.

leluyall = OPHY), (h>0%),  n=01,..,Ny—1,  (27)

for all initial value problem (1) with f € CP. The local truncation error t,41 at
= xp41, n =0,..., N, — 1, is by definition the residual that we obtain when
the exact values of the solution of (1) are inserted in the difference equation
(15)

tnt1 = Y(Tnt1) —Y(@n) = hn® (20, y(20), hn)- (28)

We also put to := y(zg) — yo-

Definition 2.2 The method (15) is said to be consistent if for all initial value
problem (1)

thi
lim sup ntl =, 29
h—>0+0§n3Nh—1H h | (29)

The method is said to be consistent of order p if

ty
sup IS = O() - (h > 07). (30)
0<n<Np—1 n

when £ € CP.

We notice that the sequences {yn}nNQ0 and {y(wn)}gio satisfy respectively
the difference equations

Yo+l =Yn + b ®(@n,yn,hn), n=0,...,N,—1 (31)

Zpt1 = Zp + hn® (T, 20, hy) + A1, n=0,...,N,—1, (32)

with starting values yg &~ A and zg = yo + dg- To compare these two solutions
we introduce the important concept of stability

Definition 2.3 The method (15) is said stable if for all initial value problem
(1) the solutions {y,} Nt and {z,}", of respectively (31) and (32) satisfy

Ny,
j=

where S is a positive constant that only depend on the problem (1) and does not
depend on the discretization parameter h. S is called the stability constant of
the method.

The condition (21) it is sufficient to prove the stability property of the
method (15). If we subtract the difference equation (31) from the difference
equation (32), and if we add the resulting equation from n = 0 to n — 1, it
results

n—1 n
=0 =0



Taking norms and using the condition (21) we have

n—1 n
Izn —yall LD hjllz; —y;ll + 1D _djll, n=0,1,...,Np.
=0

Jj=0

Then we can derive by induction

n—1 k
o=yl < | TT+20) | e 132l = 0.0
J= J=

Finally, using the inequality 1+ h;L < exp(h;L) at each factor in the product
in the last inequality, we obtain

n
o235, lon = ol S oL =) e 113l (35)
=

Convergence of the method is now established by using the stability es-
timate with the numerical solution {y,}_, of (31) and the exact solution
{y(x,)} ", that satisfy (32) with perturbations given by the local truncation
errors. One-step implicit methods requires minimal changes in the previous
arguments. These methods are formulated in the form

Ynt1 =¥n + hn‘I’(-rn: Yn,¥Yn+1; hn)a Yo given, (36)

with W satisfying a Lipschitz condition with respect the arguments y,, and y 1.
However, if the step size h,, is enough small to be applicable the theorem of the
implicit function, we can assume that y,11 is given again in the form (15).

3 Obtaining RK methods

Composition of quadrature rules, as was introduced at the beginning of this
section, is not the most efficient way to construct Runge-Kutta methods because
for a given order of the method, the number of stages of the method can be
higher than the minimum necessary. The natural approach for constructing RK
methods of order p is to impose on the coefficients of the Butcher’s array of the
method the conditions derived of asking that

[u(zn +B) = ynirll = O(WP*),  (h—0). (37)

The condition (37) amounts to match the Taylor series expansions in powers of
h of u(z, + h) and y,11(h) respectively through all the terms until the term in
h? for a function f enough smooth. The algebra involved is enormous and could
only be simplified after the introduction by Butcher of his algebraic theory of
order for RK methods. For example, for the equation y' = f(z,y), we have
retaining until third order terms

uln + 1) = g+ hf + SRS+ £F)

+ %hS(fy(fx F 11) + (Fan + 2F fay + 2 F)) + O(RY),



where fu, fy, foa,..., denote respectively partial derivatives of f and all the
functions are evaluated at (z,,y,). Similarly, the numerical solution y,+1(h)
obtained with an explicit RK method of three stages has an expansion in powers
of h of the form

Ynt1 = Yn + h(br + ba + b3) f + h*(baca + bscs)(fu + [ £y)

+ %h?’ [21)302032 (fac + ffy)fy + (b2cg + b3c§)(facw + foacy + foyy)]
+O(hY).

Explicit RK methods of one-stage have coefficients by = b3 = a21 = az2 = 0,
and then it is only possible to obtain first order methods with b; = 1. It is easy
to check the order conditions

b1 +by =1, b202:1/2,

that determines a one-parameter family of explicit RK methods of 2 stages and
order two; for example, the improved Euler method and the modified Euler
method are methods in this family. Finally, RK methods of three stages and
order three are determined by the order conditions

by +ba+b3 = 1

baco +bzcg = 1/2

bocs +bzcs = 1/3
bscaaza = 1/6.

Some methods in this class are the method of Heun and the method of Kutta
with Butcher’s arrays given respectively by

0 0

1/3|1/3 1/2 | 1/2

2/3| 0 2/3 1| -1 2 (38)
1/4 0 3/4 1/6 2/3 1/6

To get explicit RK methods of order 4 it is necessary consider methods with
four stages, as for example the classical Runge-Kutta method and the methods
of 3/8, with Butcher arrays respectively

0 0

1/2 | 1/2 1/3| 1/3

12| 0 1/2 2/3]-1/3 1

10 0 1 11 -1 1 (39)
1/6 2/6 2/6 1/6 1/8 3/8 3/8 1/8

3.1 The algebraic theory of order for RK methods

Butcher developed at the beginning of the sixties an algebraic theory to study
systematically the order conditions of a general RK method or s stages. In this
section we only want to give a concise description of this theory. To start we



will assume without loss of generality that the system of ordinary differential
equations is autonomous and given by

y =f(y), a<z<b, (40)

and that we have a general RK method with Butcher’s array

1| a1l a12 -+ Als

Co | G21 Q22 **+ A32s
(41)

Cs | Qg1 Qg2 -+ Qgg

by by .- by

such that the coefficients satisfy
8
ci:Zaij, i:l,...,s. (42)
j=1

We denote the component i-th component of the vector f by f¢ and the partial
derivative with respect to the j-th component of vector y, y’, by a colon followed
by a subscript j. For example,

oft _ i 0% f! i
oy 1o pyigE ~ )

Moreover we will use the convention that if an index is repeated in an expression,
the expression is to be summed over all values of the index. The context will
make clear in what range is varying the index. For example, in the Taylor series
expansion of u(z, + h) at = z,, we will use

(W)i(zn) = filyn), i=1,....,d, (44)
d
(") (z,) = ng(yn)fj(yn) = fiyn)flyn), i=1,....d
(45)

and, for the third and the fourth derivative of u,
(") (zn) KTSANARIP ATV L (46)
() (zn) G P LS F R P AT (47)
G PSS+ TSP S+ F TR

where we have already assumed the sum convention over repeated index and we
have omitted the argument y,, on all the components of f and its derivatives.
It is clear that each of the derivatives of u is sum of different terms, each one
representing a sum over a set of index j,k,[,... in which each summand is a
product of partial derivatives of components of f. Each of these terms is called an
elementary differential of the function f. The other characteristic ingredient of
the algebraic theory of Butcher is the association of each elementary differential

+

10



root root

Figure 1: Rooted tree 7 and labelled rooted tree At

of f to a rooted tree. A rooted tree is just a graph as the one at the left in
the figure In terms of a monotone labelling i < j < k <l < ... of that tree,
for example, the one at the right of the figure, we can associate the elementary
differential given by

d
B = > R A T A WY A Y A
7,k,l,m,n,p,q=1
in the following way. The index 7 at the root represents the i-th component of the
function f, which is differentiated with respect to the variables with the indexes j
and k because these are the indexes of the nodes branching from the root. Node
k represents the k-component of f and node j represents the j component of f
again differentiated with respect to the variables with indexes [ and m because
these are the labels of the nodes branching from node j. Following in this way
node m represents f™, node [ represents f’lp’n, node n represents f", node p

represents f and finally node g represents f?. With this convention we can
write down the following expansion in powers of the step size h for u'? (z,, + h)

ul?(z, +h) =Y a(r)F(1)(yn) (48)

TET,

Here T, is the set of all the rooted trees with order (number of nodes) ¢, and
a(7) represents the number of different monotone labelling for the rooted tree
T.

We consider now the expansion in powers of the step size h of the numerical
solution y, 11 = yn+1(h), given by

Yni1(h) = yn + 1Y bif (2 + cih, Y5) (49)
i=1
Yi(h) =yn+hY ayf(z,+chY;), i=1,...,s (50)
j=1

For each monotone labelling A7 of a rooted tree 7 of order ¢ with labels j; <
J2 < ... < jg we introduce the coefficients

S

\I,jl(/\T) - Z Axr(ja)do " OAT(Jg)dqe J1 = 15250058

j2a~~~7jq:1

and we put ¥(7) = [¥1(A7),...,¥*(A7)]. It is easy to check that ¥(7) does not
depend on the monotone labelling AT chosen for the rooted tree 7. For example,

11



for the monotone labelling of the rooted tree 7 in the figure (1) we have

S

) _ § : — §
v (T) = AijAikAjmAj1AInAlplpg = CiGi;C;A;51ClAIpCp, (51)
Jik,lmn,p,q=1 Jlp

where in the second sum we have made use of the relations (42) to contract the
indexes in the first sum corresponding to final nodes in the tree. The density
~(7) of a rooted tree 7 is defined recursively as follows: first we put

T=[T1,7T2,«,TM] (52)

if the rooted tree 7 is obtained by connecting the roots of the rooted trees
Ti,...,Tum t0 @ new node that is going to become the root of the rooted tree 7.
Then

V(1) = p()y () (1) -+ Y (Tm),
with p(7) representing the order of the rooted tree 7. When 7 is the rooted tree

of order one then v(7) = 1.
With this definitions we have that the g-derivatives of y 11 (h) and Y;(h),i =

1,2,...,s at h = 0 are given respectively by the expressions
Y@ = 3 e Y W OFE )
o TET, j=1
Eas)®| = aln(n) Y b OFE) v0)
B TET, i=1

Therefore we have

Theorem 3.1 A general Runge-Kutta method of s stages has order p if and
only if

y(r)’

holds for all the rooted trees T with order less than or equal to p, and does not
hold for at least a rooted tree of order p + 1.

Zs:biqﬂ'm - L (53)

We illustrate the theorem by writing down the table with all the order conditions
for order p < 4. The rooted trees are denoted in terms of the rooted tree 79 of
order one and the recursive definition already introduced

n2

—_ ni nn .— n n n
T=[m" 1, T =, P T, T, PR T T, T, T

We finish with the asymptotic expansion in powers of the step size h of the
local truncation error of a general RK method of s stages. If f is continuously
differentiable with respect to all the orders until the order M + 1 then when
(h—0)

M m
Yt D) —yu= Y | Y amelnF@) )| ot om0

m=p+1 LT€Ty,

12



T plr) bTE(r) = 2 = 1/7(n)

70 1 bTe = > bi = 1
[7o] 2 bTe = > bici = 1/2
(751 3 bTc? = > bict = 1/3
[[TO]] bTAC = Z” bla”c] — 1/6
[Tg] 4 bTC3 = Ez blc;-j — 1/4
[T0[70]] (b.c)TAc = Zij biciaijc; _ 1/8
[[731] bTAc? = Y. baged = 1/12
[[[7o]l] biA%e = 3 biagaje, = 1/24

Table 1: Order conditions for p < 4

where

8
e(r) =1—~(7) Z b Wi(7).
i=1
The factor of h?*! in the right hand side of (54), as a function of z,

dyia(@) = =g 2 anerF )

is called the principal function of the local truncation error of the method.

3.2 High order RK methods

It is easy to prove that the highest order for a explicit RK method of s stages
is p = s. However, using his algebraic theory Butcher’s proved the following
barriers for the highest order p that an explicit RK method of s stages can
attain.

1. For p > 5 no explicit RK method exists of order p with s = p stages.
2. For p > 7 no explicit RK method exists of order p with s = p + 1 stages.

3. For p > 8 no explicit RK method exists of order p with s = p + 2 stages.

13



Implicit RK methods can attain a higher order that of the an explicit RK
method with the same number of stages. For example, the method

1/2 | 1/2
1

has order 2 with only one stage. To find implicit RK methods of two stages,
the order conditions for order three are

b1+ by =1,

bicy + baco = 1/2

bicd + bacs =1/3

bi(a11c1 + a12¢2) + ba(azicr + asaes) = 1/6.

Because the theory of Gaussian quadrature, the three first equations imply the
orthogonality condition

/01(17 —c1)(x —e)dz =0,

from which we can derive the relation between the parameters ¢; and ¢,

_381—2
" 6cp — 3

C2

Also, from the two first equations we get

02—1/2 b _01—1/2
02—61’ 2_61—82.

by =

Finally, if in the last equation we put as; = ¢s — ass and ay; = ¢; — aia, we

obtain
_ 1/6 — b1a12(02 — Cl) — 61/2

ba(ca — 1) .
Therefore we have obtained a two-parameter family of RK methods with two
stages and order 3. In particular, with a;o = 0 we get a one-parameter family
of semiimplicit RK method.

There is only one RK method of two stages and order 4, with Butcher array
given by

@22

1 V3| 1 1 V8
2 6 4 4 6
1 V3|1 V3 1
276 |17 1
1 1
2 2

It is called a Gaussian RK method because the quadrature rule with nodes given
by the abscises of the vector ¢ and weights given by the elements of the vector b
is the Gaussian quadrature rule of order 4. This kind of Gaussian RK methods
can be constructed for each s (the number of stages) with order 2s. The same
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idea can be used to define other families of methods. For example, the Radau
methods of s stages have order 2s — 1 and they fixed or ¢; = 0 (Radau IA) or
¢s = 1 (Radau ITA). The Lobatto methods of s stages have order 2s — 2 and
they fixed ¢4 = 0 and ¢; = 1. There are three different families of methods
depending on if the first row in the Butcher array of the method is null (Lobato
ITTA), the last column in the Butcher array is null (Lobato IIIB) or if the last
row of A in the Butcher array agree with the row of weights b (Lobato IIIC).

We finish introducing the important idea of collocation. We desire to ap-
proximate in the interval [z, 2,11] the local solution u defined by

u = f(:lf,ll), Tn <o < Tpy, ll(l‘n) =Yn (55)

by a polynomial p(z) with coefficients in IR? and of degree < s. If s distinct
€1,...,¢s real numbers in [0, 1] are given the polynomial of collocation p(z) is
the only polynomial of degree < s such that satisfy the conditions

p(wn) =Y¥Yn; (56)
P (zn + cihyn) = f(2n + cihn, P(xn + cih)), i=1,...s (57)

where h,, = £,,41 — x,. The conditions (57) amount to impose that the poly-
nomial p(z) holds the ordinary differential equation system at the abscises of
collocation z,, + ¢;hyn, i =1,...,s. The value

Ynt1 = P(Tnt1) (58)

can be taken as an approximation to y(z,+1). These methods are equivalent to
implicit RK methods of order p > s.

4 Error control, variable step-size strategies and
efficiency

4.1 How to change the step size?

An adaptive stepsize selection is central to an efficient numerical integration of
ODEs. In principle, the stepsize should be selected with respect to prescribed
accuracy requirements. Most of the codes for ODEs base their strategies for
changing the stepsize in some way of control of the local error at each step of
the numerical solution. In general, for explicit one-step methods of the form

Ynt1 =¥n + hnq)(wn7Yna h),
the local error at © = x,, is defined by
e1n+1 = 'I.l(ilfn + hn) —Yn+1,

where the local solution u(z) is the solution of the problem u’' = f(z, u), u(z,) =
¥Yn- When y, = y(z,), the local solution u(z) and the true solution y(z) are
the same and then we get the local truncation error

tht1 = Y("En + hn) —Yn+1-
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Generally, the local error and the local truncation error for a method of order
p can be respectively expanded asymptotically as

el,11 = hfLJrl‘I’(mnaYn) + O(hferz)’

topr = W O (2, y(20)) + O(RLF?).

We assume the user have specified a norm || - || in which the error is to be
mesasured and a tolerance 7 > 0. Two kinds of control on the local error (or
local truncation error) are seen in modern codes. The criterion of error per step,
EPS, accepts the step to x,,4+1 only when

lebysal| < 7.
The criterion of error per unit step, EPUS, accepts the step only when
llelns1l] < hy 7.

When a code takes a step from z,, to z,, + h,, and estimate est,; is made of
the local error incurred in the step:

est, 1 ~le,1 =u(@n +hy) — Yo = hferl\I’(xnayn) + O(thr?)-

According to the expression for the local error, if we had taken the step from
T, with a step h* to get a result yj, ;, the local error would have been

u(zy + 1) =y = ()P (2, y0) + O((R7)PF?).

If the estimated local error le, 1 exceeds the tolerance, we reject the step-size
h, and we estimate the optimal step size h* that is predicted to pass the error
test. When the control is EPS, we are interested in h* such that

7= |lef [l & (/1) P estnall,

hence
B & b llest ) 5,

It is standard to use a fraction of the optimal step size, being the value of 0.9
representative of those seen in the codes. A scheme that is equivalent in codes
of fixed order is to aim at a fraction 3 of the tolerance 7

h* = hy(B7/||estng|])/ @Y.

If the step from z,, is a success, we want to predict what step size might be used
for the next step. From

we can use that (2,11, ¥n+1) = ¥(Tn,¥n)+ O(hy), to predict a suitable hy41q
as
hotr = ha(B7/|lestpa )/ 7H,

that agree with the formula used after an unsuccessful step.
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4.2 Local extrapolation

Assume we have an error estimator of the local error at each step that is asump-
totically correct, meaning that

est, 1 =le, 1 + O(hET?).
The idea of extrapolation is to define a new solution approximation by

y:erl =Yynt+1 +estyyq,

that represents a numerical result of order p + 1, because
u(zy, + hy) —yhyy = O(RET?).

From another point of view, we take each step with two formulas, one of order
p and the other or order p + 1, and then estimate the error in the lower order
result by comparison:

estp11 = YZ+1 —Yn+t1.

We talk then of a pair of formulas (p, p+1). In this context, why not to advance
the numerical solution with the more accurate result y;,,? Advancing the
method with the higher order result is called local extrapolation, a procedure
that it is adopted in quite a lot of codes based on explicit RK methods and in
many of the Adams codes so.

4.3 FError estimation with RK methods: embedded RK
pairs

A successful approach to the estimation of the local error in RK methods is to
advance the numerical solution simultaneously with a pair of RK methods of
orders p and p + 1 respectively. The key idea is to construct this pair of RK
methods in such a way that they have in commun the maximum number of
stages. This idea was first introduced by Merson (1957), who considered the
RK method with Butcher’s array

0

11

3 | 3

1011

3 | 6 6

11 3

2808
1o _3

1L 0 -2 2
1 2 1

o o 2}

This is an explicit five stages RK method with order 4. Merson proposed that
the principal term in the local error were estimated by

est =~ hn(—2k1 + 9ks — 8k4 + k5)/30
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This is an asymptotically correct estimate of the local error of the RK method
at z,, for linear systems of ordinary differential equations. When this estimate
is added to the numerical approximation y,; we get an approximation of fifth
order. However, for general systems the accuracy of this approximation degrades
to order three.

Pairs of embedded RK methods are presented with the following modified
Butcher’s array

c| A

bT

bT

ET

Here the RK method of order p is defined by the vector of abscises ¢, the matrix
s x s, A, and the vector of weights b”. The RK method of order p + 1 has the
same vector of abscises ¢ and the same matrix A but a different vector of weights
b7. The difference between the values Yhi1 Y ¥Ynt1 computed respectively with
the methods of order p and order p + 1 is then an estimate of the local error en
¥ii1- The vector ET is the vector b7 —b?. We associate the label RK p(p+1)
to the pair of embedded RK methods if we use the result y},,, of order p to
advance the numerical solution and the label RK p+1(p) if local extrapolation
it is used and the numerical solution is advanced with the value y,41.

Sarafyan, Fehlberg, y England derived pairs of embedded RK methods of
order (4,5) with the minimum number of stages, i.e. 6. Many higher order
pairs have been constructed. In particular Fehlberg (1968,1969) has presented
pairs with orders 4(5), 5(6), 7(8), 8(9), that were designed to be implemented
in lower order mode and with optimized coefficients in the principal part of the
local error (error-tuned methods). For example, the Runge-Kutta-Fehlberg 4(5)
method is given by the modified Butcher’s array

0
1 1
1 1
3 3 9
8 32 32
12 | 1932 7200 7296
13 | 2197 2197 2197
1 439 _8 3680 _ 845
16 513 1104
1 _8 2 __ 3544 1859 _ 1
2 27 2565 4104 10
25 0 1408 2197 1 0
216 2565 1104 5
16 0 6656 28561 9 2
135 12825 56430 50 55
1 0 _ 128 _ 2197 1 2
360 4275 75240 50 55

The earliest RK pairs designed from the outset to operate in local extrapolation
mode were presented by Dormand and Prince in 1980 and 1981. Of these, the
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most efficient in their respective classes are the 7-stage RK 5(4) and the 13-
stage RK 8(7), sometimes referenced as DOPRI5 and DOPRIS respectively. A
feature of DOPRI5 is the use of the FSAL (first same as last) technique, first
introduced by Dormand y Prince, which in this case requires

8720, a7]‘:i)j, j:].,...,G,

and means that the last row of the matrix A of the method agreed with the row
of weights used to advance the numerical solution. This means that although
the pair DOPRI5 has not a minimal number of stages, it operates at successful
steps as it has six stages because the first stage in the next step agree with
the last stage computed in the previous step. The modified Butcher’s array of
DOPRIS5 is given by

0
1 1
5 5
3 3 9
10 10 10
4 44 _56 32
5 15 15 9
8 | 19372  _ 25360 64448 _ 212
9 6561 2187 6561 729
1 9017 _ 355 46732 49 _ 5103
3168 33 5247 176 18656
1 35 0 500 125 _ 2187 11
384 1113 192 6784 84
5179 0 7571 393 92097 187 1
57600 16695 640 339200 2100 10
35 0 500 125 2187 11 0
384 1113 192 6784 84
_71 0 7 71 _ 17253 22 _ L
57600 16695 1920 339200 525 10

5 The class of multistep methods

5.1 Introduction

In contrast to one-step methods, where each new step is defined solely in terms
of the differential equation and the initial point given by the last numerical
computed value, the multistep technique is based on a knowledge of a sequence
of earlier numerical approximations of the solution at several previous steps. The
most important multistep formulas considered by the codes for the numerical
solution of (1) take the general form

k k
Z Qj¥ntj = hZ Bifntj, (59)
j=0 j=0

where the «;,8;,7 = 0,1,...,k are real parameters defining the numerical

method, h denotes the step size and

fn+j = f(xn+jayn+j)7 Tj = ZTo +Jh JZO,].,,]C (60)
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We shall also assume that
ar =1, |ao|+ [Bo] >0,

so the number of steps & in the formula and the coefficientes o, 85,7 =0, ...,k
could be defined unambiguously. The formula (59) gives a numerical approxi-
mation y, 1k a y(Zntx) once we know numerical approximations y,+x—1,---,¥n
to the solution at the k previous abscisas xp4g—1,-..,Zn. If B = 0 the method
is called explicit because the numerical solution {y,}Y_, can be computed
straightforwardly from the formula (59) if a starting procedure is provided to
get the initial numerical values yq,y1,...,¥kx—1. Moreover, if a computer code
implementing this method stores in two arrays the vectors

[Y’n-l-k—la"'ayn]Ta [fn+k—17"'7fn]T

and updates them after each new step, then to advance one step requires only
one evaluation of the function f.

When S # 0, the formula (59) defines y,+ as the solution of a nonlinear
system of equations that takes the form

York = Bt (Tnir, Ynir) + 8, (61)

where g denotes a known vector that depends on the numerical approximations
to the solution previously computed. Then we call the method an implicit linear
multistep method. Typically, an iterative method may be employed to solve the
non-linear system for y, 5. In this situation, to advance one step may require
several evaluations of the function f or its partial derivatives with respect the
components of y. This may seem to be a severe disadvantage, but in practice
it is not so as will be seen later. For example, if the iterative method chosen is
a fixed point iteration of the form

v+1 v 0 .
yL_:_k1 = hﬂkf(a:nJrk,yL_}‘_k) +g, v=01,... yL_}i_k arbitrary
then the convergence of the process is guaranteed if the step size h is enough
small to satisfy
hpr L <1, (62)

where L is the Lipschitz constant of the function f with respect to y. In general,
when the Lipschitz constant L is of moderate size, the condition (62) is not more
demanding that the restriction on the step size h to have an enough accurate
approximation y, ;. However, for stiff problems, the Lipschitz constant L is
of big magnitude and the restriction (62) on the time step can be unpractical.
Then iterative methods based on the Newton’s method or some variant of it
may be considered.
A general theory of multistep methods was started by the work of G. Dahlquist

(1956, 1959). After Dahlquist we associate to the linear multistep method (59)
the polinomials

k k
Q=D aicls o) =3 8¢, (63)

that are called respectively first and second characteristic polinomials of the
method. If p(¢) and o({) in (63) have a common factor ¢({), then the polyno-

mials ©
pQ)==—5, Q)= 30’



are the characteristic polynomials of a new and simpler multistep method. This
multistep method can be written in compact form as

P(E)Yn = ho(E)fn,

where E denotes the shift operator defined by Ey, = y,+1. Multiplication by
¢(E) shows that any numerical solution {y,, } of this method is also a solution of
the original method p(E)y, = ho(E)f,. The two methods are thus essentially
equal. Therefore it is usually assumed that the characteristic polynomials p(¢)
and o (¢) have no common factor, and multistep methods satisfying this property
are called irreducible.

5.2 The Adams-Bashforth and Adams-Moulton formulae

The methods of Adams are the most important linear multistep methods both
from the historical point of view and from the enormous practical value they have
had for the numerical solution of (1). They are even more ancient that Runge-
Kutta methods, dating back to at least 1.855 when F. Bashfort reported to the
Royal Society some application of a method of treating differential equations
devised by John Couch Adams. The Adams formulae are strongly related with
Lagrange’s interpolation processes as the following derivation in the case of an
ordinary differential equation emphasizes. We start writting down the ordinary
differential equation in the integral form

Tp41
vane) =y + [ f(oyla)d. (64)
Tn
If we assume that ¥,,Yn—1,---,Yn—k+1 are approximations to the solution y(z)
at the abscisas zj,...,zn_k+1 We can replace the integrand in the equation

64) with the only polynomial P} . (z) of degree less than or equal to k£ —1 that
k—1 g
interpolates the data

(mnv fn): ('/I;nflafnfl)y RN (xnkarl;fnkarl)- (65)
We obtain in this way the k-step Adams-Bashforth formula,

Tni1
pir=wnt [ P (@ (66)
Tn

Backward differences of the values f,, ..., fn_k+1, defined recursively by the
formulas 4 ' '

Vofn:fna V]—an:vjfn_v]fn—la

are very suitable for the implementation of the Adams methods. Using the
Newton’s form of the interpolatory polinomial,

k

1 .
Pri(z) = W(x_mn)"'(m_$n+17j)v'7fn,

|
—

[
Il
[}

and making in the integral in (66) the change to a new integration variable s,
defined by the relation x = z,, + sh, we obtain the formula

k—1

=0
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where the coefficientes 7.3 =0,...,k—1 are given by

vy = (~1) /01 ( _js )ds. (68)

It is important to emphasize that the coefficients v7,j = 0,...,k—1in (67)
do not depend on the number of steps k in the formula. Therefore to advance
the numerical solution with a formula with more steps require only to retain
aditional terms in the formula (67). It is useful to introduce the generating
function defined by the formal series

GH(1) =3, (69)

and it is easy to show that
—t
Gt)y= ————+«—.
®) (1—-¢t)In(1—1)

In particular, the coefficients v} satisfy the recursive equations

N+ S =1, i=0,1,2,...

Yic1 % _
2 i+1
from we can derive the first Adams-Bashforth formulas after truncating the

series after the first k terms on the right hand side of
B 1 5 o 33 251_,
Ynt1 = Y+ hfo + 5V 0+ 5V + oVt 2oV fo o).
Expanding the backward differences in terms of function values, we obtain the
standard k-step Adams-Bashforth methods for k = 1,2, 3,4 respectively

Yn+1 —Yn = hfn,
h
Yn+1 —Yn = 5(3fn_fnfl):
h
Yn+1 —Yn = ﬁ(23fn - 16fn71 + 5fn72)7
h
Yn+1 —Yn = ﬂ(55fn - 59fn71 + 37fn72 - 9fn73)-

The Adams-Moulton formulas of k steps are similarly based on replacing the
integrand function in (64) with the only polinomial Py (z) of degree less than or
equal to k that interpolates the data

(wn+1a fn+1)v (.Tn, fn)a BERE) (xn—k+1a fn—k+1)-

Because the use of the ordinate f,+1 = f(Zn+1,Yn+1), the Adams-Moulton
formulas define implicit linear multistep methods. In terms of the new variable
s, —1 < s <0, defined by & = x,,4-1 +sh, the Newton’s form for the interpolatory
polinomial Py (z) is given by

k
Pe(Tps1 + sh) =Y (1) < _jS ) VY frsts
=0

J
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and therefore

k

0
it = n = [ Pullnsa + shlds =h Y25 fos
-1 =0

weer [T )

It is easy to determine the generating function G(t) = E;’io 77, that now is
given by

with

—t
¢ = na—y

from what we can derive the following recursive relations for the coefficients ;

t
(o +mt 4t + )1+ 5+ 2 +) =1
The first Adams-Moulton formulas can be obtained after we truncate the series
at the right hand side of
19
_0V4fn+1 _|_)

_ 1 L oo L o3
Ynt1 = Yn + h(fny1 — Evfn+1 - EV Jrt1 — ﬂv fot1 — =

and we expand the backward differences in terms of ordinates. These are for
k=1,2,3,4 respectively

Ynt1 = Yn = g(fn-i-l + fn),

Yntl —Yn = %(an+1 + 8fn — fa—1),

Ynt1 —Yn = %(gfn+1 +19fn = 5fn-1 + fn-2),

Ve~ = (251 s + 646, — 264y + 106, — 19,5,

We have the following identities among the coefficients 77 and v;, 7 = 0,1,2,. ..

Loyr=31 0% 4§=012....
2.9 ==, =12,

3.
k—1

S GV farr =V ) = v VEfgn, k> 1

j=0

If y(z) is k+1-times continuously differentiable then the approximation error
in

Tn41 Tn41
/ y' (z)dr ~ / P(z)dx, (70)

where P(z) is the interpolating polinomial based for example in the exact values

('rna yl(mn))v EEE) (mnkarl;y’(mn*kJrl)):
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is given by
v =30 () O - 0 () e, o

where £ = £(x) is a point in the interval (z,—g+1, ). Integrating both sides of
(71) in (zy, Tpe1) gives

k—1
Y(@ng1) —y(@n) =h Y VIVIY (2,) + RyP
j=0
where
xn+1 —s
R = (~)Ft / < k ) y "D (E(@))de = Wy D (),

Therefore, the residual that it is obtained when in the k steps Adams-Bashforth
formula we replace the numerical values y; and f; by the corresponding exact
values y(z;),j =n+1,...,n—k+1and ¢'(z;) = f(z;,y(z;)),j =n,...,n—
k + 1 respectively it is equal to the first term in (67) that it is neglected after
truncation of the series with the backward difference of order k subtituted by
the derivative of the same order y(*) (z) evaluated in a intermediate point. With
the same analysis for the Adams-Moulton formulas we obtain

k
Y(@nt1) —y(@n) =h Y % VIY (i) + REM
7j=0
with
Rt = W2 Ly 2 () (72)

and ¢’ a point in (Z,—gt1, Tnt1)-

5.3 The backward differentiation formulas

Another important class of linear multistep methods are the backward differ-
entiation formulae (BDF), that are derived through the use of a formula of
numerical differentiation. An interpolant Q(z) of degree k is based on the y
values, including (2,41, Yn+1), rather than f values,

(zn—l—l;yn-l—l)a (:Ena yn): RN (zn—k-l—la y’n—k—l—l)-

In backward difference form, with x = x,, + sh, the interpolant Q(x) is written

—s+1

k .
Qr(xn + sh) = Z(—w < j

j=0

) Vg, (73)

Assuming that this interpolant satisfies the differential equation at x = x,41,

we obtain
k

1.
Z jvjynJrl = hfns1.

=1
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The local truncation error of the BDF formulae can be obtained directly from
the error of the interpolant (73), as was done for the quadrature based Adams
methods,

k
"(Zpt1) Z Y(Tnt1) RkBDF
with h
RBDF _ my(kﬂ)(f)p(mnﬂ), £ € (Tn—k+1,Tnt1)

and L'(z) = (z — xpt1)(x — 2) -+ - (T — Tp—g+1). Because we have

o = =0 ()

then, we finally obtain

1

——y* (), €€ (Tnit1,Tnt1)-

BDF _ 3 k+1
=h
Ri k+1

Only the BDF formulae for 1 < k < 6 are zero-stable formulae and define
useful & steps linear multistep methods. However, their importance stems from
the excelent, properties of stability that made them apropriate for solving stiff
problems. The typical implementation of a general-purpose BDF code is quasi-
constant step size. This means that the formulas used are those for a constant
step size ant the step size is held constant during an integration unless there
is good reason to change it. General-purpose BDF codes also vary the order
during an integration.

5.4 Order conditions for linear multistep methods

The local truncation error (LTE) of the linear multistep method (59) at @,
is the amount by which the true solution y(z) fails to satisfy the numerical
formula. It is defined by

k k

btk = ) Y (@nis) = b Y Bif(@nrs, ¥(@nts). (74)

i=0 =0
It is highly convenient to introduce the linear difference operator
k k
Llw(z),h] = Zajw(ac + jh) — hZij'(z + jh), (75)
i=0 =0

defined for all the functions w : [a,b] — IR? continuously differentiables in [a, b].
In particular, tp4+r = L[y(2,), h]. Assuming that the function w(z) is enough
smooth for that w(xz + jh) and w'(z + jh) could be expanded in a Taylor series
in the step size h, we can derive

Liw(x),h] = Cow(x) + CLhw'(z) + - - + C,htw D () + -- - (76)
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where the constants Cy,...,Cy,... do not depend on the step size h and are
given by the formulas

k
Co = Zaj = p(1)
=0
k
Cir =Y (ja;—B) =p'(1) —a(1)
i—0
11 & R
Cq:azjqaj_ (q—l)'zjqilﬂjﬂ 1=2,3,... (77)
T j=0 " j=0

Definition 5.1 The linear multistep method (59) is said to be of order p if
C():Cl:"': pZO, andeH;AO.

The linear multistep method (59) is said to be consistent if their order p is
greater than or equal to 1.

The consistency conditions for a linear multistep method can therefore be writ-
ten in the form

p(1)=0, p'(1)=0(1).
Different methods of the same order are distinguished by the error constant. A
natural measure of the accuracy of the method is seen to be

_ G
C o)’

that it is usually adopted as the error constant of a linear multistep method.

The local error of a linear multistep method (59) is not a concept so natural
as for one-step methods. By definition, the local error of the linear multistep
method (59) at @ = 4 is defined by

e1n+k = y<$n+k) - yn+ka

where y(z) is the exact solution and ¥, is the numerical solution obtained
by the method at z = z,4; using the exact values of the solution y,4; =
V(znt;),5 =0,1,...,k — 1 at previous steps. It is easy to prove that

S -1
- of
Y (@ntk) — Yntk = <Oékf - hﬂk@(wmk,nn%)) L

Here I is the identity matrix and

of )
8y T4k Nn+k

of
denotes the Jacobian matrix > whose rows are evaluated at possibly different
Yy

values lying on the segment joining y(zn4x) and ¥,4x- Therefore, for explicit
linear multistep methods with ay = 1, the local error el is essentially the
same that the local truncation error t,4 . If the method is implicit, however,
the local error can be considered a O(h) perturbation of a,:lthrk.
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The formulas (77) define the constants Cp,p = 0,1,2,... as linear forms in
the 2k + 2 coefficients «;, 8j, 7 = 0,...,k of the method. Because these linear
forms are linearly independent and we have esentially only 2k+1 free parameters
defining a k-step linear multistep method, the highest order we can attain is 2k.
However, these methods are of no practical significance because a famous result
that it is known as the first Dahlquist-barrier (Dahlquist, 1956).

Theorem 5.1 The order p of a 0-stable linear k-step method satisfies

p<k+2 sik espar
p<k+1 sik esimpar
p<k  siB/ax<0.

The proof of this theorem is out of the scope of these lecture notes and we refer
for it to Hairer, Norsett and Wanner (2000).

6 Stability and convergency of linear multistep
methods

We consider now a k step linear multistep method of the form (59) defining a
numerical solution of an uniform grid of step size h > 0. We also assume that we
dispose of an starting procedure that can be made dependent on the parameter
h of the discretization

YO(h)7 yi (h)7 R Yk—l(h) (78)
The concept of convergence is essentially the same as for one-step methods.

Definition 6.1 The method (59), (78) is said convergent if for all initial value
problem (1), we have

Jim, . max [y (zn) = yall =0, (79)

for all starting values y,(h),n =0,1,... k — 1 such that they satisfy

li — =0 =0,1,...,k—1.
hl}%l_*_ ||Y($0) YTL“ ) n PR )

The method is convergent of order p if this is the greatest integer such that

_ - P +
e [y(e) =yl = O), (b= 0") (50)

for all initial value problem (1) with £ € CP.

We reformulate the method as an one-step method. For that we consider that
at each step the k-step linear multistep method advance from the vector

Y, = [yrj;’yz;—l’ e ,erL—k-H]T (81)

to the new vector
T T T T
Yn+1 = [yn+17 Yoo vYn—k+2] .
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We introduce the matrix

—Q_y —Q)_s —o) -
1 0 0 0
A= (82)
0 0
1 0
with the coefficients o, = o/, j = 1,...,k, and we denote

s(h) == [yi_1(h),¥i_a(h),...,y¢ (W]",

the vector of starting values of the method. Finally, we write down the method
in the form

Y1 =s(h), (83)
Yo = (A® DY, + her & D®(zn, Ynit, Yn, h). (84)
Here A ® I denotes the Kronecker product of the matrix A and the identity

d x d matrix I, e; denotes the vector in IR* with the first component equal to
1 and all the rest components equal to zero, and

k
Q(xna Yn+1 ) Yn: h) = Z kajfnfj-
=0
We simplify in the following the notation by restricting us to the case d = 1 in

which case A® I = A.

Definition 6.2 The method (83), (84) is 0-stable if positive constants S and
ho exist such that for all initial value problem (1) and for all h € (0, ho], the
numerical solutions of (83), (84) and of the perturbed difference equations

Yk—l = S(h) + dk—la (85)
YnJrl = (A & I)Yn + h(el & I)Q(xnyYn+17Yny h) + dn+1a
(86)
satisfy
max (Y. =Y <S D (87)

k—1<n<N, .
j=k—1

for all arbitrary perturbations d; € R%* j=k—1,...,N, — 1.
We have the following important theorem

Theorem 6.1 a) The method (83),(84) is 0-stable for all £ as in (1) if and
only if the method is stable for the initial value problem with £ = 0.

b) The method (83),(84) is 0-stable for the initial value problem with £ = 0 if
and only if there is a positive constant K such that

sup  [|A"]| < K. (88)
0<nh<b—a
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The condition (88) can be caracterized in terms of the spectra of the matrix

A.

Theorem 6.2 For a matriz A of order k the following conditions are equivalent
a) There is a norm in R*® such that ||(A® I)|| < 1.

b) There is a positive constant K satisfying the condition (88).

c) If X is an eigenvalue of A then: or |\| <1 or if |\| =1 and the eigenvalue A
has a multiplicity of q then necessarily A has associated q linearly independent
eigenvectors.

For a matrix A with the Frobenius form in (82), the characteristic polynomial
is given by p(A) = (=1)kp()). Then, if p(A) = 0, the vector (\F=1 A\F=2.. /1)
is the only eigenvector associated to A and we have

Corolario 6.1 The method (83), (84) with A given by (82) is 0-stable if and
only if the characteristic polynomial of A

pN) = A o M g (89)

has all the roots of magnitude less than or equal to one, and the roots of mag-
nitude 1 are necessarily simple.

This condition is called the root condition for the linear multistep method.

The concept of consistency it is a natural extension of the one for one-step
methods. We introduce the local truncation error t,y; of the method (59) at
T = Tpy1 as the residual we obtain when we substitute in the difference equation
of the method the exact values of the solution y(z,).

k

k
tn+1 = Zak_jy(wn—j) - hZBk—jf(wn—jay(mn—j))'

j=0 j=0
Definition 6.3 The method (59) is consistent if for all initial value problem
(1) .
lim  max ||f|| =0. (90)

h—0+ k<n<Nj

The method is consistent of order p if for all initial value problem (1) with
f € CP we have ;
= P
Jmax [ = 0@) (h—0) o1
Finally we formulate the fundamental theorem

Theorem 6.3 (Dahlquist, 1959) The method (59) is convergent if and only if
is consistente and 0-stable.

7 The concept of absolute stability

The concept of 0-stability concerns with the propagation properties by the nu-

merical method of the errors introduced at each step of the numerical integration
when the step size h tends to zero. Although this limit process is relevant for the
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convergence of the numerical method, in real situations the numerical method
is applied for a fixed sequence of successive step sizes

ho,hl,...,hN_l, hiI:(EH_l—(Ei, iZO,...,N—l

and in particular, to consider a more academic and tractable situation, when the
step size h is fixed and uniform along all the numerical integration. Therefore
it is of great interest to analyze the behavior of the numerical solution obtained
in this way under the effect of numerical perturbations of the method. A pre-
liminary analysis requires to consider the restricted class of problems formed by
the linear systems of ordinary differential equations of the form

y' =Jy +gl(z), (92)

with J a diagonalizable constant real matrix d x d, and g(z) a smooth vector
valued function. In this situation, the difference e(z) between two solutions
y(z),z(z) of (92) with initial conditions y(a) = A and z(a) = A+dg respectively
is a solution of the homogeneous linear system

e =Je, a<z<b, e(a)=7dp. (93)

We denote A1, A, . .., Ag the eigenvalues of J and vi,vs, ..., vy the correspond-
ing eigenvectors, and we put

Q7'JQ = A :=diag(\i, A2, ..., Nq), Q= [vi,Va,..., V4]

Then the change of variables e = @Qn allows to decouple the equations in (93)
to obtain
Y =Xn", r=1,...,d. (94)

The component " (z) = exp(A,(z — a))n"(a) grows exponentially when x — oo
if ®A, > 0 and n"(a) # 0. When R\, < 0, n"(z) is bounded by 7" (a) for all
z > 0 and if ®A, < 0 then "(z) — 0 exponentially when z — oo. The same
conclusions can be derived for |le(z)]|.

7.1 Linear stability theory for linear multistep methods

We consider the application of a linear multistep method

k k
> aiyns; =h>_ Bifurj, ool +1Bo] #0 (95)

Jj=0 Jj=0

to the linear system (92). Let p((),0(¢) denote the characteristic polynomials
of the method. The difference {e,} between two numerical solutions {y,} y
{2z}, with {z,} given by the method when it is started with pertubed zo =

Yo+9d0,---,Zk—1 = Yr—1 + _1, satisfy the system of linear difference equations
k
> (ol —hBjJ)ens; =0, (96)
=0
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where I denotes the d x d identity matrix. It occurs that the matrix () that
decouple the equations (93) also decouple the system (96). Therefore, if we put
€n = ana then

(aj = hBiA )Ny, ; =0, r=1,...,d (97)

k
=0

J

Each equation in (97) is a linear difference equation with constant complex
coefficients. The general solution of this kind of equation is given by

k
= m(G)" T=1,2,....d
m=1

where X, are arbitrary complex constants and for each r, (7, ..., (j denote the
roots of the characteristic polynomial of the difference equation (97)

7(¢h) = p(¢) —ho(¢) =0, hi=\h

The polynomial 7 ((, iz) is called the stability polynomial of the linear multistep
method. Clearly, {n!}%2,, is uniform bounded if and only if the polynomial

n=1:

7w ({, \rh) satisty the root condition. We have
Definition 7.1 The set

R4 = {h € U : n(C, h)satisface la condicién de la raiz}
is called absolute stability domain of the method (95).

For example, the explicit Euler and the implicit Euler methods have respec-
tively the stability polynomials

WEuler(Ca B) = C - (1 + B)a ﬂ-EUlETI(Ca }Al) = (1 - B)C -1

and the absolute stability domains for these methods are respectively the unit
disk centered in —1 and the exterior of the open unit disk centered in 1. The
stability domain for the trapezoidal rule is the left plane RA < 0 and for the
midpoint rule reduces only to the segment h= i, —1 < p < 1. In general, the
absolute stability region R4 of a method must be determined numerically. A
practical graphical technique, called the root locus boundary method, plots the
parametric curve in the complex plane given by

Y(0) = p(exp(if))/o(exp(if)), 6 € [-m,7]. (98)

The boundary R4 of the absolute stability domain is a subset of the graph
I’ = «([—w, 7]) of this curve because for all h € IR 4, at least one of the roots of

7m((, h) = 0 must be of module 1 and therefore can be represented as { = exp(if).

7.2 Linear stability theory for RK methods

We consider now the use of a general RK method of s stages

Yot1 =Y + 0y bif(n +cih, Y5) (99)

i=1

Yi=ya+hy af(z,+ch,Y;), i=1,...,s,

=1
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with Butcher array

C1 | a1 a1z - Q1s
C2 | Q21 Q2 -+ Q2 cl| A
Cs | Us1 (52 o Ogg
bT
bi by - b,
to the linear test problem (92). Let y,,n =0, ..., z,,n = 0,... be two numerical

solutions given by the formulas (99) when applied to the test problem (92), with
7o =yo+0do- Let Y;,i=1,...,sand Z;,i = 1, ..., s denote also the inner stages
when the method advance from y, to y,4+1 from z, to z,,1 respectively. The
difference between the two solutions e,, := z,, — y,,n > 0, satisfy the formulas

ent1 =en+h > bJE; (100)

i=1
Ei=e,+h) ajJE;, i=1,...s,
=1
in which E; := Z; — Y;,i = 1,...,s. Again the change of variables e, =

Qnn,n >0and E; = QE;,i =1,...,s, decouple the equations in (100) and we
obtain for r =1,...,d

S
Mhor =0 +hY_ biXE]
i=1
S
Bl =mn+hY aghE;, i=1...,s
i=1
These are the same numerical approximations we have obtained if the method
(99) were used to integrate the decoupled system (94). Therefore we have re-

duced the analysis to study the effect of perturbations on the numerical solution
of the scalar test problem

Y =Xy, Xel, RX<O. (101)
In general, when the formulas (99) are applied to the problem (101) we

obtain

Yni1 = R(h)yn, h:=AheC.

The function R(h) is called the stability function of the method and we have
that {y,}52, is uniformly bounded if and only if

~

[R(h)] < 1.

Therefore, the perturbations {e,}5; in (100), remain uniformly bounded for
all initial perturbation dy, if and only if |R(Ah)| < 1 for all eigenvalue A,,r =
1,...,dof J.

Definition 7.2 The set
Ra:={hel:|R(h)| <1}
is called the absolute stability domain of the method (99).
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8 Predictor-Corrector Methods

To motivate this important class of methods we start with an implicit linear
multistep method

k—1 k—1
Yn+k + Z AjYntj = hﬂkf($n+ka yn+k> +h Z ﬂjfnJr]': (102)
j=0 j=0

with |ao| +1|5o| # 0, Bk # 0, and ay, = 1. To step from x4 5—1 t0 Ty yg With this
method it is necessary to solve for y,; the nonlinear system defined by the
equations (102) and this can be accomplish, if the step size h is enough small,
through the fixed point iteration defined by

(0]

Ynix arbitrary (103)
k-1 k=1

VTS aiynss = b8 @nin ¥ ) + 1Y Bifass, v =0,1,...
=0 =0

A reasonable initial approximation yﬂr i for this process can be computed with a

different explicit linear multistep method. The explicit linear multistep method
is called the Predictor, the implicit linear multistep method is called the Cor-
rector and both methods define a pair Predictor-Corrector pair. We collect the
formulas for both methods in respectively

k k—1
ZG;Yn-H = hZﬂ;‘ ntj,  predictor (104)
=0 =0

k k
Z 0jyntj =h Z Bifntj,  corrector (105)
Jj=0 j=0

and we assume |og| + |65 # 0, o #0 and a; #0 .

In a predictor-corrector pair we can iterate with the corrector (103) until
the convergence, i.e. until two successive iterations satisfy some criteria for
convergence as for example ||y£;'_:_kl} - ym_kH < € with €, for some ¢ > 0 of
the size of the machine number. . The main inconvenient of this approach is
that we can not know a priori the number of iterations that the method will
make at each step. The standard approach it is to iterate with the corrector
only a fixed number of iterations. For example, (104) can be used to compute
a quantity yg?_]i_k (the predicted value), then we modify the term f,, ;5 in the

corrector formula (105) by replacing the argument y,.j of f by yﬂrk to get

fT[LO_i}_k = f(anrk,yg_k (first evaluation of f), the second formula in (103) with

Eﬂr > and again we evaluate fr[lljrk :

f(zhik, yg_]i_k) to be used in succeeding steps. We said in this case that the pair
of methods (104), (105) it is said implemented in the PECE mode. By contrast
the predictor-corrector method can be used in PEC mode if the last evaluation
of f were omitted. Also we have P(EC)™E modes and P(EC)™ modes in
which the corrector formula in (103) it is used a fixed number m of times before
completing the step. We collect all the formulas of the mode P(EC)™E'"t

v = 0 is used to obtain a first correction y
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witht=0ort=1,
* t
P yn+k+2ayn+1_hzﬂjfgj—] J
(EC)™: £, = f(xn+k,yLik)

1/+1 v m t
ElJrk + ZajynJr] - h'ka[ +k + hZﬂ]fq[z+]

7=0
v=1,....m—1
E(l_t) : fq[:i]k = f(xn+kay£:i}k); sit=0.

At this point we make only a brief account of the order theory for predictor-
corrector schemes. Let yESJ]r o ygﬂr R ,yL"jr]k denote the sequence of the predic-
tor value and the m corrected values for a predictor-corrector pair in P(EC)™E'~!
mode (¢t = 0,1). We assume that the predictor linear multistep method has or-

der p* and constant error Cp. 1 and that the corrector linear multistep method
has order p with constant error C}41. We will denote y[ J]rk, =0,1,...,m, the
numerical approximations we would obtain with the predictor-corrector method

under the assumption that ym_j =¥ (®n+j),5 =0,1,...,k — 1 (localization as-

sumption). Then we have

Y(onir) = Fiby = Cpopah? 1y (@) + O +2), (100)
for the predicted value, and for the corrected values y["i,:}, v=0,1,...,m—1,
gt = np e _f V]
Y(®Tnir) — yn+k Brlf(Trnsr, Y(Tnir)) (T, yn+k)]
+Cpp 1 APy (P () 4 O(RPH2). (107)

A recursive argument can then be followed to prove that, if p* > p, then
V(Tntr) — 5’51]1@ = Cp+1hp+1y(p+1) (zn) + O(thrZ)_ (108)

In general, if p* < p, the predictor linear multistep method gives an approx-
imation yg?_]i_k of order p*, and the successive corrections yﬂk,yf}rk, ... are
approximations of respectively order p* 4+ 1, p* + 2, ..., until we attain the order
p of the corrector. After then, additional corrections does not arise the order
of the new approximations but the principal term of the local truncation er-
ror of these approximations became the same of the principal term of the local
truncation error for the corrector linear multistep method.

With the two estimates in (106) and (108) the estimation of the error in a
predictor-corrector pair is quite straightforward when p = p*. For example, the
formula

C’p+1hp+1y(p+1)(.rn) — A(y[m] [0] ), (109)

* n+k yn+k
p+1 T Cp+1

in which we have suppressed the tildes in the values Eﬁr  that were remembering
us that the localization hypothesis was in effect, gives an asymptotically correct

estimate of the local truncation error in the corrected value ym_}k . The process
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of adding on the error estimate to this value is sometimes called Milne’s device
but amounts simply to local extrapolation. The most important use of the
estimate (109) is for the determination of an appropriate step-size h,, when the
method is implemented with a variable step size strategy.

8.1 Predictor-Corrector methods based in Adams formu-
las

Good stability characteristics make Adams Predictor-Corrector pairs the most
commonly used formulae in the codes for non stiff problems. If we use the k-
step Adams-Bashforth method as predictor and the k£ — 1 step Adams-Moulton
method as corrector we can use the Milne’s device because both methods have
the same order. Most of the codes base on the formulas in differences

k1
Ynt+1 —¥Yn = hZ%*V]fm p* = kv CI:Jrl = ’71:
i=0
k=1
Yot1 =Yn=hY %V, p=k, Cip =%
i=0
(110)

We introduce the notation V‘,];fn+1 to denote that the difference operator acts

on the ordinate values f}b'il,f,[lmft], s fgf;ﬁl.

scheme in P(EC)™E(~1) is defined by

Then, the predictor-corrector

k—1
eyl =y ey v, (111)
j=0
(EC)y™: = f@ap,yi) (112)
k—1
v =y n Yy Vi (113)
j=0
v=0,1,....m—1 (114)
B0 A = flang, ), it =0, (115)

We can avoid to store the differences Vf;fr[fift], j=1,...,k—1, by using the
equivalent formulation given by

yg-]‘rl = YE?-]H + h71:—1v‘@cfr[jift], (116)
and
yg’;ﬁl] =yl + hr)/l)ck—l(fr[:fl]—l - fr[:f;”)a v=12....m-1 (117)

Finally, the estimate of the local truncation error is obtained by summing all
the formulas in (117) for v = 1,2,...,m — 1, to obtain

0 * -
ygzn}rh - YLJ}A = h%—1vfn—1f¢[:i1ﬂ:

and
torr = by Ve 070, (118)
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At the beginning of the step we dispose of the differences V7 f,[lm_t] ,J=0,...,k—
1. Then we compute v’gf,[ji;” to be used in the first correction using the
recurrence
VeI = Vg - v,

and then the difference

Vi b = Ve e 6l
that it is used in (118). At the end of the step we updated the differences by
summing fr[:j:t] - fﬂrl to Véf}ﬁ;ﬂ,j =1,2,...,k-1

8.2 Variable step size in linear multistep methods
8.2.1 Interpolatory tehcniques

Changing the step-size in linear multistep methods and in predictor-corrector
schemes is not so straightforward as for one-step methods. Any change in step-
size requires the computation of new starter information if it is wanted to use
the same linear multistep formula. For a step length change from h to ah
these new values will be approximations to the solution at the abscises x, —
ah,x, — 2ah,...,x, — (k — 1)ah if a k step formula is used at x = z,. If
accuracy is to be maintained following a revision of steplength, the interpolating
mechanism adopted for the new starter information must be of a sufficiently high
algebraic order. To yield the highest order of accuracy, the Hermite interpolating
polynomial, employing the data (zn—j,¥n—j,fn—j =¥n_;), 7 =0,1,...,k— 1,
could be chosen.

For a k step Adams formula the stepping from = = x,, to * = z,4+1 amounts
to the transformation between the data

(Y’nay'lru s 7yz1—k+1) 4 (er-l-layz'H-l: . '7yz1—k+2)'

and for doing this it is used the polynomial I(z) of degree < k that interpolate
the data (zn,y7,),-- s (Tn—k+1,¥p_jy1)- Similarly, for a k step BDF formula,
the stepping from x = x,, to £ = x,11 is equivalent to the transformation

(Yna Yn—15-++)Yn—k+1, yil_k) — (YnJrl,Yn, ey Yn—k+2, y;H_l),

and it is represented by the polynomial I(x) of degree < k that interpolates the
data (xnv yn): s (xn*kJrl:}Inkarl)v (xnv Y;L)

A change of the step size in a k step formula at z = x,, requires to apply
the interpolation process in at least all the following k — 1 steps. This is a con-
ceptual simple process but very expensive and researchers have designed other
representations of the interpolatory polynomials I(x) in terms of appropriate
linear functionals of the original data that facilitates the change of the step size.
For example, a very important strategy used for first time by Gear in his code
DIFSUB was the introduction of the Nordsieck vector

h2 hk—l
[I(wn), hnll(zn), 2—?1”(.’17/”), ey m
to store the necessary information at x = =z, of the interpolating polynomial
I(x). The interest of this vector is that when the step size is changed from h,, to
hpt1 = anh, the vector it is changed by multiplying it by the diagonal matrix

D(ay) = diag (1,a,02,...,ak"1).

T*=D ()]
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8.2.2 Adams formulas with variable coefficients

The alternative approach is to consider the construction of linear multistep
formulas based on non uniform grids. In general, and restricting the attention
only to formulas of Adams type, these have the structure

k

Yn+1 = Yn +hnZﬂj(hna---ahn—k—i-l)fn—i-l—j (119)
i=0

in which the coefficients ;,5 = 0,...,k, depend on the step lengths of the &k

B B
previous steps through the quotients ——*, ..., —2=k+1
hn hn7k+2
The Adams formula based on the data (z,,—g+1,£0—k+1),- .., (Zn, ) can be

derived similarly to the case of step size h constant by using the Newton divided
difference formula for the interpolating polynomial. We have

k—1
Ynt1 :yn+hn2aj(n)f[zn,...,zn_j], (120)
j=0
where ‘
1 Tp41 Jj—1
as(n) = 1 / i]l(x —a_)dt, (121)
and f[z,, ..., z,—;] denotes the j-th divided difference, which can be computed

with the following recursive formulas

flz,] =1,
f[(En, PP ,[En_j+1] - f[.’En_l, PP ,.’En_j]

f[mn,...,xn,j]: r — v J=1,...
n n—j

For computational purposes it is suitable to introduce the generalized backward
differences given by

®;(n) = <H(wn — zn_l)) flzn,....xn—j], 7=0,...; (122)

i=1

that can be also computed recursively by the formulas

®(n) = ®;—1(n) — Bi—1(n)®;_1(n - 1),
where p(n) = 1 and
J

Bitn) =[] ——"—. j=12.... (123)

T Tpn—1 — Tp—1—4
i=1

With this notations the explicit k£ step Adams method is given by

k—1
Ynt1 =¥n + han Zgj (’I’L)ﬂ] (’I’L + ]-)@] (n)a (124)

=0
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where

1 e il g
n Jx i—0 n+1 n—1

n

If we add to the interpolating polynomial of the explicit method the term

k—1
(H (x — xn_l)) flznt1, - Tn_k+]

i=0
we get the polynomial of degree k that interpolate the k + 1 data
(Tn—tt 1 Fnmkt1)s - -+ (@Tns Bn), (Tng1, fgr)-

Therefore, the k step implicit Adams method is given by the formula

k—1

Yni1 = Yo +hn Y gj(n)Bi(n + 1)®;(n) + hnge(n)®x(n + 1). (126)
=0

The coeflicients g;(n) := g;1 are also computed recursively with the formulas

1 1 e
9j.q = m, lfj =2
Gj—1q— ———————0j—1.4+1, ifj>3.

Tn4+1 — Tn41—j

The predictor-corrector scheme based in these formulas are then defined by the
formulas

predicted value
k—1
0 m m—
Yo =Y 4 b Y g (m)B(n + 1)@ (m) s
i=0
first corrected value

yibs = ¥ + huge1 (n) @ (n + 1)

next corrected values

Fp(n+ 1) =&y (n+ 1)1 4 (g2 — oY),

yg::f] = YEIJ}A + hngk—l(n)(fq[z,:]rl - fq[zlj:ll})a v=1,....,m;

estimate of the error

estni1 (k) = ha(ge(n) — gr—1(n)) @ (n + 1)1
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8.2.3 BDF formulas with variable coefficients

This important family of methods is generalized to nonuniform grids imposing
that the polynomial Py,(x) of degree k that interpolates the values y;,j =
n+1,...,n —k+ 1 at the abscises xp_g+t1,...,Tny1 satisfied the ordinary
differential equation at © = z,,+1. The corresponding formula is

Z (H($n+1 - $n+1—z’)> Y[Tni1s- s Tajr1] = faga. (127)

j=1 \i=1
Defining generalized divided differences 9);(n + 1) of the values yy,
J
Yi(n+1):= (H($n+1 - $n+1—z’)> Y[Tni1,- s To—jr], §=0,...k (128)
i=1

the formula it is written as

k
hn,
in+1)=h,f1. 129
]Z::l Ay +---+ hnfj+1 1/)1(,”’ ) nin+1 ( )

Better than to use the Adams-Bashforth formula as a predictor is to extrapolate
the initial iteration yﬂrl as the value at z = z, 41 of the polynomial of degree

k that interpolates the data y,_g,...,y,. In this way we have

k
Y =y + > Bin+ D), (130)

Jj=1

with the coefficients §;(n + 1) as in the Adams formulas above.

9 Numerical Methods for Delay Differential Equa-
tions

9.1 Delay Differential Equations

Delay differential equations (DDEs) arise in many areas of mathematical mod-
elling: for example, population dynamics (taking in account the gestation times),
infectious diseases (accounting for incubation periods), chemical kinetics (such
as mixing reactans), etc... The major difference between DDEs and ODEs is
the presence in the model of memory terms that refer to delayed solution val-
ues. There is inherent qualitative differences between solutions of DDEs and
ODEs (oscillatory solutions, onset of chaos, stability of solutions) that made the
presence of lags or delays in the system of fundamental interest.
We first introduce the scalar DDEs

yl(x) = f(l‘,y(l’),y(l‘ - T))a z 2> Zo, (131)

where 7 > 0 is a constant which we call the lag (or delay). Once we can evaluate
the right hand side of equation (131, we can reduce the problem of existence of
solutions for (131) to the case or ordinary differential equations. Therefore, if

y(z) = ¢(z), z0—7 <2 <0, (132)

39



is given, the function y(z—7) is known in [z, £o+7] and equation (131) becomes
an ordinary differential equation in [zg, £o+7] that can be solved for y(x). Then,
we can evaluate the right hand side of (131) and to solve the delay differential
equations for y(z) in [zg + 7,20 + 27], and so on. This is called the method
of steps. Alternatively, we can write down the system of ordinary differential
equations

yi(z) = flz,y1(2),¢(z—7)), 0o <z <o,
yé(m) = f(.’E,yQ(.’E),yl(.’E—T) , 01 <z <o,
y;n(w) = f(:v,ym(:c),ym_l(w - T))7 Om-1 X2 <o,

where o; = xo + [T, | integer.
The method of steps can be extended to treat more general DDEs with a
non-vanishing variable lag

y'(x) = f,y(2),y(z — 7(z,y(2))), ==z (133)

(
The lag function 7(z, y(x)) > 0 is called state-dependent if it depends on values
of the solution y(z). Now the solution y(z) is required to satisfy an initial
condition

y(@) = ¢(x), =€ [min(s—7(s,y(s))); zo]. (134)

§~2T0

A general form for a system of DDEs is

Y () =F(z,y(@),y(aa(z,y(2), ... y(aw(z, y(x)), = >0, (135)

where the delay functions ay(x,y(z))equive — 7¢(z,y(x))leqz, for 1 < £ < k the
nonnegative lags 7(z,y(z)) being possibly state-dependent lag functions.

In the method of steps for this problem we must solve for the ordered set of
points {o;}, which satisfy

oj —a(oy,y(or)) =0, for some o} > o with o9 = 0. (136)

The method of steps suffers a limitation in the case that 7(z) — 0 as z — z*,
a situation that it is usually described with the term of vanishing lag. In this
situation = x* is a natural barrier beyonds which the method of steps cannot
proceed.

9.2 Derivative discontinuities

Delay differential equations frequently display simple properties not present in
ordinary differential equations. If the solution y(z) of (131) is to be continuous
in all its derivatives at the initial point x = zq, then it is clear that the left
hand derivatives ¢(")(zo—) -defined by the initial function- and the right hand
derivatives y(") (zo+) -define by the differential equation- must all agree. If this
condition is not satisfied, then the solution will have a jump discontinuity in
some derivative at the initial point that will be passed on to subsequent times
x > xp, through the effect of delayed terms. This is ilustrated by the following
equation

yl(x) =ylz—-1), >0, y(x)=1, =z€[-10). (137)



Clearly y'(z) = 0 on [—1,0) but is equal to 1 on [0,1). Thus y'(z) has a jump
discontinuity at z = 0. The effect of this discontinuity is then propagated on to
the points z = 1,2,3,... by the delayed term y(z — 1). Consider for example
the point x = k where k is a positive integer. Differentiating k-times we obtain

y " (@) =y (@ - 1),

that by induction implies y**1) (z) = y'(x — k), thus showing that y**") has a
discontinuity at z = k. We say that y has a k+1 th-order derivative discontinuity
at the point ¢ = k. Derivative discontinuities of this type turn out to be a
common feature in delay-differential equations. For problem (137) it is possible
the following representation of the solution

[z/7] n
vy = 3 B DD
n=0
where [z] denotes the integer part of z. The form of the solution indicates also
that the solution grows smoother as x increases. This smoothing of derivatives
occurs for all DDEs where z — 7(z) is monotonic increasing.

For a scalar equation with a variable lag as in (133) it is not difficult to
show how discontinuities propagate. If y'(z) undergoes a jump discontinuity
at 09 = xo and the delay function a(z,y(z)) = = — 7(x,y(z)) traverses the
point og, then the jump in the derivative y'(x) at o¢ is transmitted through
the DDE to produce a jump discontinuity in one of the derivatives of y(x) at
x = o1. In general, the set of ordered points {o;} to which discontinuities can
be propagated are those points o = oy, such that

oj —afo,y(o)) o>o0j,

changes sign for some o;. The extension of these ideas to general systems as
in (135) was developped by Willé and Baker (1992). In a system of DDEs dis-
continuities tracking can be complicated by discontinuities being propagated
between solution components. This fact gives rise to the concept of strong and
weak coupling and network dependency graphs. Strong coupling describes the
propagation of discontinuities between different solution components by an ODE
term, that is to say 7(z) = 0. Weak coupling describes the propagation of dis-
continuities within the same solution component and between different solution
components by a DDE term. The importace of tracking become apparent when
constructing effcient, high-order numerical methods for solving DDEs. As an
example, we consider the DDE system

vi (@) = yi(@)ya(z — 1), y3(2) = y2(2®) —y3(yi (@), y3(@) = ya(z - 3).
There is a strong coupling from component y; to component y», and from com-
ponent y3 to component y» and weak couplings from component y, to componen
Y1, from component y» to component y3 and finally from component 32 to itself.

10 Numerical Issues for solving DDEs

Most of the codes for solving DDEs systems base on a robust ODE solver with
an additional dense-output algorithm (for evaluating delayed solution values).
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ODE solvers are not only convenient when treating a DDEs system as an ODE
system using the method of steps, but also allow to take advantage of all the
numerical knowledge adquired over years of research on the numerical solution
of ordinary differential equations.

10.1 Dense output

Dense output has interest per se also in the numerical solution of ODES:

1. To provide to the codes of ODE the capabilities of dense output without
degrading the performance of the method (for example, for plotting). Af-
ter forcing a very small step size to hit a node where output it is desired,
codes might need several additional steps until they rise again the step
size until the optimal for advancing the integration of the problem.

2. To make posible to the codes to find the zeroes of some component of the
solution, as for example in continuation algorithms.

One of the earliest codes for DDEs was based upon an RK formula combined
with cubic Hermite interpolation. When advancing from z, to z,41 with an
explicit RK method we have to our disposal numerical approximations to the
value and to the slope of the local solution u(z) at = z,,. Also, after finishing
the step and if this is accepted, we find an approximation to the value u(z,41).
Interpolation of these data appear as a natural approach but as the value of
the slope f(znt1,¥n+1) will be needed in the next step we can consider his
computation in the actual step. Therefore we can construct a Cl-piecewise
cubic Hermite interpolatory polynomial that it is of order 3.

A natural approach is also provided by collocation formulae (and hence of
RK collocation formulae), that provide the collocation polynomial itself for gen-
erating approximations inside the step length.

10.1.1 Continuous embedded extensions of RK methods

RK formulae have now been supplemented by continuous RK formulae that
correspond to Burcher’s array of the form

Cc1 ai ais
Co as 0 ass
(138)
Cs Ag1 A g2 Uss
0 100) O - b6

The most interesting property of the Butcher’s array for these RK formulae
is that the coefficients a;; of the method does not depend on 6. Therefore,
with this formula it is possible to generate numerical approximations at the
intermediate abscises ¢ = z, + 6h,,,0 < § < 1 of the interval [z, Z,+1] without
any additional evaluation of f. The Euler method

y(xyn +60h) ~ yy + 0hf (20, y0)

42



provides a first example of an embedded continuous RK method. Another ex-
ample of a third order RK method with an embedded continuous extension is
provided by

o

ot (NI
(NI

O(1+6(—3/2+2/30)) 6°(2—2/30) 62(2/3—6/2)

Embedded continuous extensions have been developed by Horn (1983) and En-
right, Jackson, Norsett y Thomsen (1985). For example, Horn found for the
embedded pair Runge-Kutta-Fehlberg 4(5) an embedded continuous extension
or four order at the cost of one additional evaluation of f. For the embedded
pair of Dormand and Prince is possible a continuous extension of fourth order
without any additional evaluation of f. It is given by

bi(d) = 6(1+6(—1337/480 + 6(1039/360 + 6(—1163/1152)))),
b2(9) = 0,

b3(0) = 10002(1054/9275 + 6(—4682/27825 4 0(379/5565)))/3,
bi(6) = —562(27/40 + 6(—9/5 + 6(83/96)))/2,

bs(0) = 1822502(—3/250 +6(22/375 + 6(—37/600))) /848,
bs(8) = —2202(—3/10+0(29/30+0(—17/24)))/7,

and

6
Y(wn + eh) Xyn+ hz bz(e)kz
=1

It is important to stress that the order, the asymptotic form of the error
and the stability of the DDEs formula depend not only on the underlying ODE
formulae but also on the dense-output formulae.

Theorem 10.1 (Order of Convergence) Given an ODE method of order p com-
bined with an interpolant of order q, if discontinuities not exceeding order r only
occur at meshpoints then the order of the resulting DDE method is min(p, q,r).
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