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Abstract

In this paper the geometric stability switch criterion presented by E. Beretta and Y.
Kuang (2001) for the class of characteristic equations P(\,7) + Q(\, 7)e *™ = 0, where
P, @ are respectively polynomials in A of degree n and respectively m (n > m) with coeffi-
cients which are functions of 7, is generalized to the wider class of characteristic equations
PAT)+QWN, 1)e ™ + QP (N, 7)e=?} =0, where P,QW, (i = 1,2) are polynomials in A
of degree n and respectively m;, (n > m;, i = 1,2) with coefficients which are differentiable
functions of the delay 7 € R,o. We show that the previous results by E. Beretta and Y.
Kuang (2001) can be obtained by setting Q® (), 7) = 0 and QM (\,7) = Q(A,7) in the
geometric criterion we present in the paper. Furthermore, the geometric stability switch
criterion even applies to characteristic equations were polynomials P, Q. (¢ = 1,2) have
delay-independent coefficients thus including many results known in literature (e.g. H. I.
Freedman and Y. Kuang (1991)). The term “geometric stability switch” comes from the
fact that the stability switches occur at delay value, say 7*, which are zeros of suitable
function S, = S,(7), n € Ny, i.e. Sp(7*) = 0 for some n, and that the direction of the
switch depends on the sign of S, (7*). Once obtained by a simple mathematical software
(e.g. MATLAB) the graphs of S,,(7), n € Ny, we know the delay values of switching and
related direction.
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1 Introduction

In this paper we study the occurrence of any possible stability switch from the increase of
the value of the time delay 7 for general delay equation

x,(t) = F(x(t), z(t — 1)) (1.1)

where z € R, 7 € R,y = [0, +00) is a fixed delay and F': C ([-7,0],R") — R" is a class
C'! with respect both z(¢) and z(t — 7).
We assume that any equilibrium z* of (1.1) is delay dependent, i.e. F(z;) = 0 gives a

constant solution
ot = (1) (1.2)

which is continuous and differentiable in 7.
The variation equation around z* (set u(t) = x(t) — z*)

alt) = ( aiis )>W) u(t) + (%)m*m ut — 7) (1.3)

gives the characteristic equation

det { (3?62)),0*(7) +e (%)mﬂ — )\I} =0 (1.4)

which in general has delay dependent coefficients, where det denotes the determinant of a
matrix, / is an identity matrix and A are the corresponding characteristic roots.

We give the following definition:

Definition 1.1 A stability switch occurs at 7* € R if crossing 7* for increasing 7 the
stability of 2*(7) changes from asymptotic stability to instability or vice versa.

The most general structure of characteristic equation (1.4) results to be

D(\,7)=0 (1.5)

where

D\ 1)=P(\ 1)+ i QEY (N, 7)e= R,
P\, 7) = X7 opi(T)V,
QB 7) =M ()N k= 1,...,m,

m,n, mi € Ny,

(1.6)

and p;(7), q](-k)(T): R.o — R are continuous and differentiable functions of 7 € R,,.

Generally in (1.6) is m < n but herefollowing we remove this condition.
We assume that A = 0 cannot be a characteristic root, i.e.

D(0,7) #0 V1 € Ryy. (1.7)

In the study of the occurrence of stability switches the following is an essential result.
Assume that we rewrite (1.5) as

D\, 1) =X"+g(\, 7). (1.8)

Then, the following theorem holds (see Freedman and Kuang [5]):
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Theorem 1.1 Assume that g(\,7) in (1.8) is an analytic function in A and continuous

in T such that
a = limsup ‘)\ g(A 7')‘ < 1. (1.9)

ReX>0,|\| > o0

Then, as T varies in R1o,the sum of multiplicities of roots of D(A,7) = 0 in the open right
half-plane can change only if a root appears on or crosses the imaginary azis.

It is to be noticed that if in (1.6)
mp<nk=1,...n, (1.10)

i.e. the degree of polynomial Q) in X is lower than the degree n polynomial P in \, then
assumption (1.9) holds true and Theorem 1.1 applies to the characteristic equation (1.5)
and (1.6).

Rewrite D(A, 7) in (1.6) like

D(\ 1) =

o> w+z(2q] )]

without loss of generality we assume p,(7) =1 and define

g\, 1) = 7Tzzlpj(T))\j + i (% q](-k)(T))\j> e R (1.11)

Assume A such that Re(A\) > 0. Then, for any 7 > 0:

n—1 m m (k)
. 19,(7)] o (T ] 0)
‘)‘ g()‘aT)‘ < z_% |)\J|nfj —|—Z‘€ A p= 0_ |)\|n*j

= k=1
(k)
m mip q
< Z |p]n —j Z Z : n(]) —>O7|)\|—>OOJ (112)
0 [Al =1 =0 |l

since on the right hand side of (1.12) n — j > n —my, > 0. Therefore, the assumption (1.9)
of the Theorem 1.1 holds true. Hence, characteristic equations (1.5) with structure (1.6)
which satisfy (1.7) and (1.10), i.e

(A.1) po()+zkaQO() VT >0
' n > myg, E=1,2,....m

may have a stability switch for some 7 > 0, say 7%, only if A = +iw(7*), w(r*) € R, are
characteristic roots.

In the following of the paper we still study the occurrence of stability switches for the
subclass of characteristic equations (1.5) where

D(\,7) =P\, 7) + QN 1)e™ + QP (X, m)e™ (1.13)

which is already sufficiently general to include as a particular case the characteristic equa-
tion

D\, 7)=0, D\7)=P\71)+Q\1)e (1.14)



recently studied by Beretta and Kuang [3]. An application is also shown in a paper by
Beretta, Carletti and Solimano [2]. Therefore, we extend the geometric stability switch
criterion developed by Beretta and Kuang [3] for (1.14) to the more general case (1.13).
This will be done in the next section.

However, we don’t feel that the method we are presenting in the next section could be
applied to general characteristic equations (1.6) with m > 2.

In Section 3 we present an application of the geometric stability switch criterion.

We conclude the paper with Section 4 showing that many of the characteristic equations
known in literature are included in the case with structure (1.13), and that related stability
switch results are obtained as particular cases of the geometric stability switch criterion
presented in Section 2.

2 Stability switch geometric criterion
In this section we study the occurrence of stability switches for the characteristic equation
D(\, 1) =0, (2.1)

D\ T) =P\ 7))+ QW 7)e M + QP (N, 1)e P, (2.2)
where P, Q®, i = 1,2 are polynomials defined in (1.6), satisfying the assumption (A.1),
namely

(A1) po(7) + a6 (1) + 4P (1) #0 V7 >0
n > mg, k=1,2.

According to (A.1) a stability switch may only occur with a pair of simple pure imaginary
roots A = %iw, w € R, of the characteristic equation (2.1). Since P, Q¥ k = 1,2 are
polynomials with real coefficients

P(_iwaT) = P(iwaT)a Q(k)(_iwaT) = Q(k)(iwaT)a k= 17 2

where “—” denotes complex and conjugate, thus implying that if A = iw, w > 0 is a root
of (2.1), then even A\ = —iw, w > 0, is a root of (2.1).

Finally, we assume that if A = iw, w > 0 is a root of D(\,7) = 0, then

(either
{ Pr(i, ) + Q) (iw, 7) # 0
Pr(iw, ) + Qg)(iw, T) + Qg) (iw,7) 0 Y7 >0
or
{ Pi(iw,7) + Q) (i, ) # 0
L Prliw, 7) + QW (iw, 7) + QP (iw, 7) £0 V5 >0

ie. P, QW Q® have no common imaginary roots. The meaning of this assumption will
be clear herefollowing.
Assume that A = iw, w > 0 is a root of (2.1), (2.2). Denote by Pr, Q%) (k =1,2) and

by Pr, Q(Ik) (k = 1,2) respectively real and imaginary parts of the polynomials P(iw, 1),



Q™ (iw,7), k = 1,2. From the characteristic equation (2.1), (2.2), separating real and
imaginary parts, we get:
(Pr(iw, ) + Qg)(iw, 7)) coswt — (Pr(iw, 1) — Q(IZ)(iw, 7)) sinwr = —Qg)(iw, ),
(Py(iw, 7) + Q% (iw, 7)) coswr + (Pr(iw, 7) — QY (iw, 7)) sinwr = —Q'\" (iw, 7).

(2.3)
Hence, from (2.3), w = w(7) > 0 must satisfy the equations
QW QP - W@ _
COS(.UT— (Q PR)+Q1 (Q] 2PI),
|P(iw, T)!2—|Q(2)(iw,7) (2 4)
sinwt = & (Pr+Qf”)~ 51)(PR+Q5%2)), .

|P(iw,)]* | Q®) (iw,m)|”
A necessary condition in order that (2.4) holds true is that w = w(7) > 0 is a root of
F(w,7)=0 (2.5)
where
Flo,r) = |G, ) @0, )]
— [QW (i, 1)@ (iw,7) - Pe(is,) + Q) (i, ) QP (1w, 7) — Pyliw, 7] (26)
— [QR (1w, 7) (Pr(iw, 7) + QP (iw, 7)) — Q" (iw, 7) (Pr(iw, 7) +Q$§>(z‘w,7))]2.

Assume that w = w(7) is a positive root of (2.5) for 7 € I C R, and that for 7 ¢ I such
a root is not defined. We assume that each positive root w = w(7),7 € I of (2.5) is a
continuous and differentiable function of 7. Since w = w(r),7 € I, if we substitute w(r)
into the right hand side of (2.4) we can define the angle 6(7) € [0, 27| as solution of (for
the sake of simplicity we omit the arguments on the right hand side):

QW QY P >+Q§“(Q§2)—P1> . T(w(r),7)
cos () = Q] = R

sin () = QR (Pr+0P)- @MV (Pr+QY) _ . S(w(r).r) (2.7)
N 1P| |’ T R(w(n)m)”
where, of course
2
R(w(r),7) = |P(iw, 7)* = |Q® (iw, )| . (2.8)
In order that A = +iw(7), w(r) > 0 solution of (2.5) for 7 € I, are characteristic roots
of (2.1) the necessary and sufficient condition is that the arguments “w(7)7” in (2.4) and
“g(7)” in (2.7) are in the relationship:
w(r)T =0(1) +n2r, n€ Ny=:NU{0}. (2.9)
Hence, we can define the maps 7, : [ — R
7 2
To(T) =: M, ne€ Ny, 7€l (2.10)
w(r)
where w(7) is a positive solution of (2.5).
Let us introduce the functions S, : I — R :
Su(T) =7 —7a(1),  n€NyTEL (2.11)

Of course A = +iw(7), w(r) > 0 are characteristic roots of (2.1) at the 7 values, say 7* € I,
which are zeros of S,,(7) for some n € N;. We can prove:
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Lemma 2.1 Assume that w(7) is a positive solution of F(w,7) = 0 defined for 7 € I,
which is continuous and differentiable. Assume further that (A.2) holds true. Then the
functions S, (T), n € Ny, are continuous and differentiable on I.

Proof Remark that

2
Sn(T):T—M, n € Ny, 7€ T
w(r)

where for all 7 € I, w(7) is positive, continuous and differentiable. Hence it is enough to
prove that #(7) € [0, 27] is continuous and differentiable for all 7 € I. First we prove that
6(r) € (0,2m), i.e. (1) # 0,2x for all 7 € I, thus excluding 27 jump discontinuity as
6(r) =0 or 6(1) = 2m. By the assumption (A.2) at least either

Pp(iw, ™) + QF (iw,7) # 0
: (1) (2); (2.12a)
Ppiw,7) + Q%' (iw, 7) + Qp ' (iw,7) #0 V7 >0

or

Py (iw, 7) + QY (iw, 7) # 0
i (1), @), . (2.120)
P](ZW,T) + QI (ZWJT) + QI (ZWJT) 7é 0 VT Z 0

Assume first that (2.12a) holds true. From (2.7) if (1) = 0, 27 then (sinf(7) = 0)

o _ 0P+ QY

Q' = Qg Prt QD (2.13)
and substituting in cos §(7) one gets:
_ ! (1)@ 0P+ Qo
cosf(r) = PP = 1Q®P [QR (Qr" — Pr) + QR W(Qz — )
_ R o o

(Pe+ Q)PP =1QOP)  Pr+Q%

Thus, if 6(7) = 0,27 from (2.14) we obtain Py(iw,7) + QW (iw, ) + Q' (iw,7) = 0 in
contradiction to the second of (2.12a). Similarly we prove 0(7) # 0, 27 for the case (2.12b).
Hence (7) € (0,27), ¥ 7 € I. According to (2.7) we can define 0(7) as

/

arctan (S(T)) if sinf(7) > 0,cos (1) > 0,

T(r)
5 if sinf(r) = 1,cosf(r) =0,
6(t) =< m+ arctan (;8) if cos (1) < 0, (2.15)
s if sinf(r) = —1,cos (1) =0,

—

27 + arctan

o)

\ ig)) if sinf(7) < 0,cosf(r) > 0,

where S(7) =: S(w(7),7), T(7) =: T(w(7),T) are continuous and differentiable functions
of 7 € I. It is easy to check that 6(7) is continuous on I. Furthermore 8 (7) is well defined
for 0(7) € (0,27) and is indeed given by

_ —S(N)T'(r) + S (T)T(T).

() T2(r) + 5%(r)

(2.16)
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Observe that if 0(7) # Z, 2%, then T(7) # 0 and (2.16) simply follows from (2.15). When
0(t) =T, %" we have T(7) = 0 and we compute 6 (7) directly from cos 8(7) = T(7)/R(7),

where R(7) =: R(w(7),7) and R*(t) = T?(7) + S?(7). We obtain
—sinf(r)0 (r) = (T(r)/R(7)) . (2.17)

It is easy to see that in the limit T'(7) — 0 (2.17) implies (2.16) as well.

Therefore, if 0(7) € (0,27), 7 € I, then §(7) is a continuous and differentiable function
on I. Since w(7) is positive, continuous and differentiable on I, the functions S, (7), n € Ny
are all continuous and differentiable on I. This completes the proof of Lemma.

We can now give the main result of the paper:

Theorem 2.1 Let w(T) be a positive root of (2.5) for T € I C Ryy. Assume that at some
el

Su(7*) =0 (2.18)
for some n € Ny. Then a pair of simple conjugate pure imaginary roots Ay (7*) = iw(r*)
and A_(1%) = —iw(1*) of (2.1) exists at T = T* which crosses the imaginary axis from left

to right if 6(7*) > 0 and crosses the imaginary azis from right to left if 5(7*) < 0, where

. , dRe\
o(r") = 829”{ Ir ‘/\:iw(r*)}

= sign { [R(w(T), T)E (w(T), 7')] — } - sign {S;(T*)} . (2.19)

Proof Ifw(7) is a positive root of (2.5) for 7 € I, the relationship (2.9) implies that (2.18)
is sufficient in order that Ay (7*) = iw(7*) and A_(7*) = —iw(7*) is a simple pair of pure
imaginary and conjugate roots of the characteristic equations (2.1), (2.2) which occurs at
7 € I. Since 0(7*) = sign {dgf)‘
axis for increasing 7 according to the sign of §(7*). To prove the geometric stability switch
criterion it is therefore necessary to prove equality (2.19). Let us first derive an expression

for S, (7*) where at 7%, S,(7*) = 0. Since S,(7) is given by (2.10) and (2.11), then

Amiw(r*) }, Ay (7*) and A_(7*) are crossing the imaginary

S () = W) — 0 (T%)w(T¥) + 7w (T%)w (1) (2.20)
()
where 6 (7*) is given by (2.16).
Taking into account that S(7) = S(w(r),7), T(r) = T(w(7),7) and that S'(7), T"(7)
are total derivatives in “7”, then in (2.16)

T'(1) = T, (w(r), ")w' (1) + T (w(1), T)
{ S'(r) = S, (w(r), "w' (1) + S.(w(T),T) (2.21)

where T, S, and T; ,S’T are respectively the partial derivatives of 7" and S first with

w? w
“,o0n

respect to “w” and then with respect to “7”. Hence, by substitution of (2.21) into (2.16)
and using (2.16) in (2.20) we obtain

S, = o (W) + () () R

T™T(r) = S(r)Ti(r))] (2.22)



where of course, for the sake of simplicity, we have also set R(1) = R(w(T), 7).
In the following we will use this nomenclature for derivative. The total derivative, say
of P(\, ) with respect to 7 will be denoted by

) d\ )
D.P(\ 1) := Py(), T)d— + P_(\,7) (2.23)
T
where Pj(\,7) := O\P(\, 7), P.(\,7) := 0, P(\, 7) are the partial derivatives with respect
to A and respectively with respect to 7. Same nomenclature applies for derivatives of Q)
k =1,2. Return to the characteristic equations (2.1), (2.2), i.e.

PAT)+ QU 1)e M+ QP (A, 7)e” =0. (2.24)
Differentiating (2.24) with respect to 7 we obtain

dA AP Qe ) + P+ QW e 4+ QP e (2.25)

dr (P — Q®e2\7) + P} + Qg\l)’e*AT N QE\Q),e*”‘T. .
Let )\ = Z.W, w > 0 Since ZP),\ = P(:), then P)’\ — _ZP(:) Slmllarly we have Qg\l)l _ _Z'Q((Ul),,
QE\Q) = —iQ®@'. Hence

a, w(PeT — Qe ) — i [Pleim + QW + QP e ]
> |A=iw  — - - . . : :
dr ir(Peir — Q@e—w7) + Peiwr + QU 4 Q) i
wA —1iB

= - 2.2
iTA+C (2.26)

. dRe) ) d\
sign {? |A=w} = sign {Re(g |A=w)} :

Since

we compute:

Re(@| - )_ (CUAR+B[)(CR—TA[)+(wA[—BR)(C]+TAR)
dr M=) T (Cr—TA[)?+ (Cr+ TAR)? ’

from which
) d\
sign {Re(% |,\:Z~w)}
= sign {w(ARC'R + A]C]) - T(ARBR + A[B]) + B[OR - BRC]}
= sign {Re [A(wC —7B) + iBC’]} (2.27)

“ »

where means complex and conjugate. According to (2.26), in (2.27) we have:

A = (Pein . Q(?)e—in)R
= P(T +iS)— QT —iS)
= (P-Q)T +i(P+Q®)s, (2.28)

!

B = (Pl + QSI)' 4 Qg)'e—im)R
= PAT+iS)+ QW R+ QW (T —iS)
= (P, + Q)T + QW R+i(P, = Q™)S, (2:29)
C = (P + QY + Qe ™R
= P(T+iS)+ QY R+ Q¥ (T —iS)
= (P,+ QT +QY R+i(P, - QY)S. (2.30)
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Furthermore, from (2.7)

S = QPP +QP) - Q@ (Pr+QY) = Re[iIQV(P+Q®)],  (2.31)
T = QWQY - Pr)+ Q1 (QF — Pr) = Re [QW(QY — P)] . (2.32)

Therefore, from (2.8), (2.31), (2.32) we get:

B = (IPP=|Q®[), = PP+ PP, - Q®Q¥ — Q¥ Qe (2.33)
R, = (1P|~ |@®|), = PP, + PF, — Q®Q¥ — Q»Q', (2.34)
S, = ReliQ(P+Q®)+iQM(P,+QY")]. (2.35)
T, = Re[-QV'(P—Q®)—QW(P, - Q)] (2.36)
S, = ReliQ (P + Q@) +iQM (P +Q®")], (2.37)
T, = Re[-QW'(P-QW) - QWP - QW) (2.38)

Finally remark that since
Flw,7)=R*-T?*—-S8*=0

for all 7 € I, where w = w(7) > 0 is a root of F' =0 for 7 € I, then we have

F,(w,7)=2(RR, - TT, - SS,), F.(w,7)=2(RR, —TT, - SS.)

and I( ) ! ! !
) F (w1 RR_—-TT1T —SS
__ %) 4 T T 2.39
)= en ~ RE —TT S5 (2.39)
for all 7 € I.

Now, we are in position to consider the terms appearing in (2.27). Let us start with
Re(TAB). Here and in the following we present the main results leaving the detailed
computations to the reader. We have

Re(AB) = R(RR, — TT. — SS.) + Re {6} (2.40)
where
Sy = —RZ(PP Qe Q )+RTQ QY ;>+RSQ QY + P
+(T? = SH(PQY — QW P,) + 2iTS(P Q? +QPP). (2.41)

It is easy to check that
b0 = QY [R?Q® + R(T +iS)QY + (T +iS)*P
~PL[R’P + R(T - iS)QW + (T - iS)’Q?]
— R2% 2inQ (2) '(P + Q () g—iwr 4 Q(Q)e—mm)
~R*P,(P + QWe ™7 4 Q@e 2vm) = (2.42)

Therefore 1
Re(AB) = R(RR, —TT. — SS.) = 5RF;(W, 7), (2.43)



and from (2.39)

!

Re(—TAB) = —%TRF;(W,T) = %TRLUI(T)F (w, 7). (2.44)

w

Now we consider the term Re(wAC) in equation (2.27) we obtain

Re(wAC) = R(RR, —TT, — SS.) + Re {6} (2.45)
where
6 = —RYPE,-QPQY) +(1° - $*)(PQY — QPP,) + RTQM(QY ~ F,)
+RSQWi(QY + P)) 4+ 2iTS(PQY + Q@ P). (2.46)

It is easy to check that
o = QW [RQW + R(T +iS)QW + (T +iS)*P]
—P,[R*P + R(T —i8)QWM + (T - i8)?Q?]
— R262inQ£)2)I (P + Q(l)efin + Q(2)672iw7)

—R?P (P + QWe T 4 Q@e 2Ty — 0, (2.47)
Therefore
Re(AC) = R(RR,, — TT., — SS.), (2.48)
i.e. ]
Re(wAC) = §wRF’;(w,T). (2.49)

Finally, we consider the term Re(iBC') in equation (2.27) we obtain:

Re(iBC)=T(S,R. —S.R )+ R(S.T, — S.T.)+ S(R,T. — R.T.) + 0,, (2.50)

where
(52 = S;Re {621} + T(;Re {522} + S;Re {523} + T;Re {(524}
+Re [iQM (P, + Q") Re {025} + Re [QU(P, — Q2")] Re {62}
+097 + dog + 099, (2.51)
and

b = ~T(P+ QP)(PL = Q¥) = RQV(P, ~ Q) +iS(P ~ Q¥)(P. - @), (232

0oy = iT(P + Q®) (P, + QY") —iRQV (P, + QP) + S(P — QW) (P — Q¥)), (2.53)

T

bo3 = T(P + QD) (P, = QY) + RQW(P, — Q") —iS(P - QW)(P, = QY"), (2.54)

b = =il (P + QW) (P, + Q) +iRQV(P, + Q) = S(P = Q¥)(F, + QY), (2:55)
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0os = T(P+ QW) (P, — Q%) + RQW (P, = QY') —iS(P — QW) (P, — Q¥)), (2.56)

(2.58)
0 = TR Re|iQV(P,+QY)
—SR,Re [QW(P, - QY] + SR, Re [QV (P, - Q%) , (2.59)
b = RRe[i( PP, +QP Q)]
+Re [i(T — iS)?PLQY" +i(T +iS)* PLQ™)| . (2.60)
Let us prove that 62 = 0. First we consider Re {d2;}. From (2.52):
Re{n} = Re{-T(P+Q)(F —Q®)— RQ(P. - Q)
+S(P - Q) (P - Q)
= Re{—(P, - QW) [RQW + (T —iS)P +(I'+iS)QP|}. (2.61)
Notice that A\ = iw is a characteristic root of (2.24), i.e
P(iw,7) + QW (iw, 7)e™™™ + Q® (iw, 7)e™*T = 0. (2.62)

Since
Re™™ =T +iS, Re ™™ =T —iS, (2.63)

(2.62) implies that:

RQW + (T +iS)P + (T —iS)Q? =0,

RQW + (T —iS)P + (T +iS)Q® = 0. (2.64)

Therefore, from the second of (2.64), we have Re{d»;} = 0. Similarly, we can obtain
Re {09} =0,i=2,3,4,5,6. We now consider the terms dy;, i = 7,8, 9.
Complicate and tedious computations lead to

0y = do7 + 0og + a9
= Re {prlpt;éiﬂ} + Re {Q QY 532} (2.65)
+Re {PLQY 033} + Re { P.QY 634},
where
03 = iRQWQW + QW (iT 4+ )P — QW (- zT+S)P+zR2 (2.66)
03 = iRQWQW WiT - $)QW — QW (—iT — S)QY — iR?, (2.67)
033 = QWUT — 5)P+Q ( T+ S)Q( ) +i(T +1iS)?, (2.68)
034 = —QW(3ET +5)Q® — QW (—iT — S)P +i(T —iS)>. (2.69)
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Let us start considering d3;. From (2.66)
b3 = iRQWQW + QW (T + S)P — QW (—iT + S)P + i(T? + S?).

Now remark that from the second of (2.64) we obtain:

iRQWQW +iQMW(T —iS)P +iQ"W(T +i9)Q? =

Le.

iRQWQW +iQW(T —iS)P = —iQW(T +iS)Q®
By substituting (2.71) in (2.70)

031 = —iQW(T +i9)Q® — QW (—iT + S)P +i(T? + 5?)
(S —iD)(QMQ® - Q P =T +i8).

Notice that from (2.64) we obtain

RQUWQY = —(T +iS)PQ® — (T —iS)QPQ®

RQUP = ( —iS)PP — (T +iS)Q®@
from which

RQWQ® — QUP) = (T — iS)R,

le.

R(QWQ® — QWP —T +iS) =0.
Since R # 0, then

QWQ® —QWp —T+iS=0

and this implies that
631 = 0

Similarly, we get d3; = 0, 7 = 2, 3, 4. Therefore
62 - 0,

i.e.

Re(iBC)=T(S,R. — S.R)+ R(S.T, — S.T))+ S(R,T. — R.T.).

Now, by standard computations we obtain :

Re(iBC) = el T) {~(TS, ~ ST, )ww — (TS, — ST))w} .
2w
Combining (2.44), (2.49), (2.78), we obtain

sign {Re(% |)\iw)} = sign {Re [A(wC’ —7B) + iBC]}

]. ! ! ]. ’
= sign {57Rw (T)F,(w,T) + inFw(w,T)

F,(w,T)
2wR

{~(TS, = ST )ww' — (TS, - ST;)w}}

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

= sign {F o, 7) [(w? + Tww ) R? — (TS, = ST, )ww' — (TS, — ST, )w] } .

2WR
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Since w(7) > 0 for all 7 € I, then

dA

sign {Re(E |A:w)} = sign {R(w, ), (w, T)} :

sign {(w2 + Tww )R* — (TS, — ST, )ww — (TS, — ST;)w} . (2.79)

Furthermore if 7* € [ is a delay value at which S,(7*) = 0 then (2.22) holds true and
(2.79) gives

sign {Re(% ‘A:iw(T*) )} = sign {R(w(q-*), T)Fu’,(w(q—*), 7—*)} - sign {S;l(q-*)} : (2.80)

and this proves the Theorem.

3 An application

To show the applicability of Theorem 2.1 we notice that for a second order characteristic
equation (i.e. P(\,7) is a second order polynomial in A and Q® (), 7),7 = 1,2 are at most
first order polynomials in A ) the algebraic equation F'(w,7) = 0 in (2.6) gives a polynomial
equation in w which is of degree 8. Thus, unless for a specific model and to avoid length
algebraic computations, here we show how to apply Theorem 2.1 considering the first order
characteristic equation:

DA T) = A+a(r) + by (7)e ™ +by(r)e T =0 (3.1)
which belongs to the general class (2.1) with
PO\T) =XA+a(r), QU T)=0b(7r), QD7) ="0y(r), (3.2)

where a(7), by (7) and by(7) are real smooth functions of delay 7, assumed to have continuous
derivatives in 7. Then

Pliw,7) = iw +a(t), QW(iw,7)=bi(r), QP (iw,7)=by(r)
thus implying that

Pr(iw,7) = a(1), Pliv,7) = w, Qg)(iw,T) = by (1),

QW (iw, 1) =0, QP (iw,7) =ba(r), QY (iw,7)=0. (33)
Substituting (3.3) in (2.6) we find that w(7) must be a positive root of
Flw,7) = [o*+d’(7) - 53(7)]2 = [b1(7) (b2 (1) — a(r))]* = B} (7)o
= [0+ a(r) —B()] — B [0+ Ga(r) —a(m)?] =0.  (3.4)

Hence, the equation F'(w,7) = 0 gives

w' +w?(2a” (1) = 2b5(7) — bi(7)) + (a*(7) = b3(7))* = bi(7) (ba(7) — a(7))* = 0.
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Its zeros are

{wi(T)Z%[b?()—% ™)+ 263(7) £ \JA(D)] (3.5)

A(r) = bi(7) [b(7) + 805(T) — 8a(T)ba(7)].
Of course by (1) # 0 V7 > 0 and we assume that
b2 (1) + 8b3(7) — 8a(T)ba(7) #0 VY7 > 0. (3.6)

This assumption guarantees that wy(7) (if exist) are the simple roots of F'(w(r),7) = 0.
Assume that w, (7) (or w_(7)) exists for 7 € I, then (3.4) shows that

R(w(r), ) = wi(r) + a’(7) = b3() #0 (3.7)

for all 7 € I. Hence, according to (2.7) we can define the angles 0.(7) € (0,27) for 7 € I
as solution of

() h@ws(m) b0 (ba(r) — a(7))
R o e o D oo e - o R

According to (2.10), (2.11) we define the functions S (7) : I — R :

0.(T) +n27
w(7)
and the study of stability switches becomes the study of the zeros of the functions S (7)

n (3.9). Using the popular software such as MATLAB, we can get the values 7* such
that S;(7*) = 0, and determine the sign of -£S(7*) . The sign of the stability switch is

determined by §(7*) = sign {dszf,\

§(7*) = sign {R(w(T*),T)FuI)(w(T*),T)} - sign {S;L(T*)} .
Then, notice that

5’:(7) :T—TTLi(T) =7 — , n € Ny, (3.9)

,\:iw(T*)} which according to (2.19) is given by

F(w,7) = 2w [20” + 2a%(7) — 2b3(7) — b}(7)] . (3.10)
If wi(7) is a positive root of F(w,7) = 0, then according to (3.5),
2wi + 2a*(T) — 2b5(7) — b3 (1) = £/A(T).

Hence
F,(we(7%),7") = 2w (T [ﬂ: ] (3.11)

Finally, if w. (7) is a positive root of F(w,7) = 0, then
* * * * * 1 * %
R(wx(r7),77) = wi(r%) +a*(r7) = b3(77) = 5 (0(7") £ A (). (3.12)

In conclusion, from (3.11), (3.12) we get

. , dRe\
§(%) = sign {? ‘A:iwi(ﬂ)}

— sign{:l: A (B2 () + A(T*))}-sign{d%sj(ﬁ)}. (3.13)
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Notice that, in correspondence of the characteristic roots A = +iw, (7*), (3.13) becomes

§(7*) = sign {%S: (T*)} , (3.14a)
whereas, if A = +iw_(7*), (3.13) gives
3(r°) = sign {~(R(*) = JAG)} - sign {%Sn (T*)} | (3.14b)

Remark 3.1. If Q® (A, 7) = by(7) = 0 in equation (3.1), i.e.
A+ a(T) + b (1)e™™ =0,

then w3 (1) = bi(1) —a*(7) whereas w_(7) is never feasible. Accordingly (3.14a) holds true,
in agreement with Theorem 3.1 in Beretta and Kuang [3].

As an example, we consider a model proposed by Bélair and Campbell [1] suitably
modified to give a characteristic equation belonging to the class (3.1). The model equation
proposed by Bélair and Campbell [1] is

#(t) = file(t —T)) + folaz(t - T2)) (3.15)

where f;(z) = —A;tanh(x),i = 1,2 and where A;,7i = 1,2 were assumed to be positive
constants.
We modify (3.15) in the following way

z(t) = —A;(7) tanh(x(t — 7)) — Aa(7) tanh(x(t — 27)) (3.16)
where for A;(7) we assume the simple structure:

Ai(r) =Aie M7, A eRy, i=1,2. (3.17)

Of course (3.16), (3.17) have no biological (physical, etc.) meaning but it is a simple
mathematical test for Theorem 2.1.
The characteristic equation at the equilibrium solution z = 0 gives

A + Al (7')67/\T + A2 (7')672)@ =0 (318)
which belongs to the class of first order characteristic equation (3.1) with
a(1) = 0,b1(7) = A1(7), bao(7) = As(7). (3.19)
From (3.5) we see that
1
WA(r) = 5 | A3(r) +243(7) + /A (3.20)
where w, (w_) is the root obtained choosing the sign + (respectively —) in the right hand
side of (3.20) and
A(r) = A(r) [A3(r) + 843(r)] . (3.21)
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It is easy to see that w,(7) exists for all 7 > 0, i.e. for all 7 € I, = R,o. Furthermore,
w_(7) exists for all 7 such that As(7) > Ai(7). For example, if in (3.17) we choose

Ay > Ay, g > g then w_(7) > 0 exists for all 7 € I_ =:[0,7) where
1 Ay
T = log —. 3.22
' Mo — M1 & Ay ( )

: Ay (T)wy (7) Ay(1)As(7)
B 1 B M P 1o Ea o KA

" A(r)_(1) A (1) 4y (r)

. 1\T)W_\T (T o(T

_ = _ = [7 2
sinf_ (1) ) = A cosf_(7) )= A%(T),T el (3.23b)
and, according to (3.9) the two sequences of functions are:
S:(T) =T= w; n € Ny, 7€ I, (3.24a)
w4 (7)
- 6_(1) 4+ n2m
=T - — N I . .24

S, (r)=r71 o) n e Ny, 7€ (3.24b)

Stability switch may occur at the delay values, say 7*, which are zeros of the functions
S;F(7) in (3.24a) and S, (7) in (3.24b) and the direction of the stability switches is respec-
tively given by (3.14a) and by (3.14b).

We may notice that in (3.14b)

B(r) = JA(T) = A3(7*) = \JA3 () (A3 (7") + 843(7)) < 0

for any 7* > 0 and accordingly (3.14b) becomes:

. dRe\ , d - .
szgn{ - ‘A:iw(ﬂ)} = sign {ES” (1 )} . (3.25)

For the following set of parameters

Al = ]_, A2 = 8, M1 = 03, Mo = 04, (326)

the graphs of functions S:(r) versus 7 are depicted in Fig.3.1, where I, = [0,+00),
I, =[0,71), 7 = 20.7944.

Figure 3.1 Distribution of zeros of S (1) for the set of parameters (3.26). The
equilibrium z = 0 of (3.16) is unstable for all 7 € (0.12,12.34), asymptotically stable
outside this interval. We have two stability switches: the first at 7 = 0.12 toward
instability, the second at 7 = 12.34 toward stability.
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Notice that, from the structure of functions S, (1), S, (7) (see (3.24a,b)) if for some n,
say n* € N it is S;. (1) < 0 for all 7 € I, (or S;.(7) < 0 for all 7 € I_), then , for every
n>n*, St(r) <0 forall 7 €I, (respectively, S, (1) < 0 for all 7 € I_, n > n*). Hence,
it is sufficient to depict the graphs versus 7 only of the first nonnegative functions in the
sequences S;F(7), S, (7), since those negative cannot give rise to stability switches.

In Fig 3.1, we see that only the functions Sy (7), Si"(7) are nonnegative in the sequence
S(7), and the function Sj (7) in the sequence S, (7). All the functions have same shape
and therefore each nonnegative function has two zeros. Starting from 7 = 0 (notice that
at 7 = 0 the characteristic equation (3.18) gives A = —(A; + 4y) < 0, i.e. asymptotic
stability) for increasing 7 we have the sequence of zeros:

0<T£<T&<Tﬁ<7’f§<7’&<7ﬂ§
with

Sf o o =012; 1, =12.34,
Sy ¢ To = L12; 71y, = 5.56,
St omi =172 15 =3.92

Furthermore, let M (7) the total multiplicity of characteristic roots of (3.18) on the right
hand side of complex plane. Hence, Fig 3.1 says us that from 7 = 0 up to 73] (excluded)
M(7) = 0 and the equilibrium is still asymptotically stable. At 7 = 7] a couple of
characteristic roots A = +iw, (75]) exist which are entering in the right half complex plane
according to (3.14a) (since -£S{f(757) > 0) and hence M (1) = 2 for 7 € (74}, 7y;) and the
equilibrium is now unstable. According to our Definition 1.1, 75} = 0.12 is a delay value at
which a stability switch occurs toward instability. Now at 7 = 75; a couple of characteristic
roots A = +iw_(75;) exist which are entering in the right half complex plane according to
(3.25) (since 4£S; (75;) > 0). Therefore crossing 7o, the total multiplicity changes from
M(1) =2 to M(7) = 4 but equilibrium remains unstable. Hence, according to Definition
1.1, 75; is not a stability switch delay value. Now, we can easily extend this analysis of
M(7) to the whole sequence of zeros. We obtain easily

M(r) = 0, relomh); M) =2 1€ m);
M(T) = 47 TE (T(ﬁaTlJi)' M(T) T E (7—117 12);
M(r) = 4, 7€ (rh70); M (7) T € (42, Ton)5
M(r) = 0, 7>

In conclusion M(7) =0, 7 € [0,7’5{), M(r) > 2for T € (11, 705) and M(7) = 0, 7 > 745.
Hence the equilibrium z = 0 of (3.16) is unstable in the interval (7] = 0.12, 705, = 12.34)
and asymptotically stable for 0 < 7 < 757 = 0.12 and 7 > 75, = 12.34. We have two
stability switch delay values. The first toward instability at 7 = 73] = 0.12 and the second
toward stability at 7 = 7, = 12.34. As already noticed in the paper by Beretta and Kuang
[3], in delay differential systems with delay dependent coefficient large delays seem to have
a stability effect.
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4 Discussion

In this paper we have generalized the geometric stability switch criterion presented by
Beretta and Kuang [3] for the class of characteristic equations (1.18) with delay dependent
coefficients

D\ T) =P\ 1)+ Q(\,1T)e ™ =0

to the wider class of characteristic equation (1.17)
D7) = PO, 7) + QWA 1)e™ + QU (A, 7)™ = 0.

Why “geometric” stability switch criterion? This term is justified shortly recalling the
theory developed in Section 2.

Assume that we know the stability of the steady state when 7 = 0. The assumptions
made ensure that the multiplicity of characteristic roots in the right half complex plane
can only change if a couple of simple pure imaginary roots A = +iw(7), w(7) > 0 cross the
imaginary axis at some delay value, say 7* > 0. Then w(7) > 0 must be an isolated root
of F(w,7) = 0 given by (2.6). This defines the function w = w(r) for 7 € I C R,,. With
w = w(7), 7 € I we define the function 0(7) € (0,27), 7 € I as a solution of (2.7), function
which is continuous and continuously differentiable for all 7 € I . The couple of simple
pure imaginary roots of (1.17) occur at the 7 values, say 7*, which are zeros of the function
Sn(T), 7 € I in (2.11) and which are continuous and continuously differentiable functions
for all 7 € I . The direction of this couple of simple pure imaginary roots A = +iw(7*) (i.e.
if they are entering in the left or right complex plane for increasing 7) is given by (2.19)
in Theorem 2.1, i.e. by the sign of S, (7*).

Hence, the knowledge of the geometric shape of the functions S,, = S, (1), 7 € I, i.e.
location of their zeros 7* and the sign of S, (7*) give us through Theorem 2.1 the way to
determine at which delay values the stability switches occur. This justifies the term “geo-
metric” stability switches. Therefore, it is sufficient to get by some simple mathematical
software the graphs of the functions S, (7) versus 7 for n € N,.

Remark 4.1. It is interesting to notice that the results of this paper are in agreement
with the results presented by Beretta and Kuang [3] for the class of characteristic equations
(1.18). The characteristic equations (1.18) is obtained from (1.17) by setting

QYN 7)=0,QW(\, 1) =Q(\, 7). (4.1)
For example, if we consider (2.6) in this paper with conditions (4.1) we get
F(w,7) = |P(iw,7’)|4 — [-Qr(iw, T)Pg(iw, T) — QI(iw,T)PI(iw,T)]2
— [Qr(iw, ) Pr(iw, T) — Q; (iw, T)PR(iw,T)]2
= |P(iw,7)] (|P(iw, 7)|* — |Q(iw,T)|*) = 0. (4.2)

Since |P(iw,T)| # 0, w must be a positive root of
|P(iw, 7)|* — 1Q(iw, 7)[* = 0, (4.3)

in agreement with Beretta and Kuang [3].
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Furthermore, from (2.7) with conditions (4.1) we get that the angle 6(r) € (0,2m),
7 € I will be a solution of

{ sinf(7) = =P (iw,7)Qr (iw,7)+ Q r (iw,7) Pr (iw,T)

N | P(iw,)|? ’ (4.4)

Qr(iw,7) Pg(iw,7)+Q (iw,7) P (iw,T)
|P(iw,T)|? ’

cosf(r) = —

still in agreement with Beretta and Kuang [3]. Therefore (4.3), (4.4) define the functions

_0(r) +n2m
w(7)

Sn(T) = s TLENO,

for which our Theorem 2.1, once observed that under conditions (4.1)
R(w(r),7) = [P(iw, 7 — [Q®(iw, )| = |P(iw, ), (4.5)

gives

o {dRex
5(77) = sign{ 02 o |

= sign {F;(w(T*), T*)} - sign {%Sn(T*)} . (4.6)

in complete agreement with Theorem 2.1 in Beretta and Kuang [3].

Remark 4.2. We wish conclude observing that the geometric stability switch crite-
rion even applies to the particular case in which the characteristic equations have delay
independent coefficients, i.e.

D(A7) = PO+ QUMN)e™ + QI (N)e™ =0 (47)
with " "
PO =Y pN, QOO =2 "V, i=12 (48)
=0 i=0

where n > m;, i = 1,2 and pj, q(-i) are given real numbers.

J

Since P, Q™ are independent of 7, any solution w > 0 of (2.6) will be independent of
7, so as the angle § € (0,27) solution of (2.7). Denote by w* the solution of (2.6) and 6*
the corresponding solution of (2.7).

Therefore the functions S, given by (2.10), (2.11) will be

0* + n2mw
w*

Su(r) =71 , n € Ny (4.9)
where the second term in (4.9) is independent of 7. Hence S,,(7) is a family of straight-line
versus 7 which zeros are:

*

0* +n2mw
T =

w*

s n c NO (410)

at which S/ (7*) = 1. Hence, from Theorem 2.1 of this paper, the direction of stability
switches is given by

dRe\

5(r*) = sign{ |n=iw* } = sign {R(w*)Fw(w*)} (4.11)
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where )

R(w") = [P(w")]* - |Q®(w")

Of course, these results even apply to the characteristic equations

DA\, 7)=P\)+Q(\)e =0 (4.12)

where P(A), Q(\) are polynomials in A with n > m and with time delay independent
coefficients.
Let w* be the isolated positive zeros of

F(w) = [P(iw)[* = |Q(iw)|" (4.13)

and 6* be the corresponding angle solution of (4.4) with P, independent of 7. Then
the stability switches may occur at the 7 values given by (4.10) and the direction of the
switches will be given by:

d(7*) = sign {d];f)\ |A=iw* } = sign {F;(w*)} : (4.14)

Assume for example that (4.12) is a second order characteristic equation,i.e.
PA) =X +ar+ec, Q) =b\+d (4.15)

where a,b, c,d are given real numbers with ¢ +d # 0. Then P(iw) = —w? + iaw + c,
Q(iw) = ibw + d and (4.13) becomes

w' —wWr* +2c —a®) + (> = d*) = 0. (4.16)

We may have two positive roots, say w,,w_, satisfying

wi = % [(b2 +2c —a®) & \/K] : (4.17)

where
A= (> +2c—a*)? —4(* - d¥). (4.18)

Furthermore, it is easy to check that
F(wy) = 2wy [£VA]. (4.19)

From (4.4) we get the angles 6, (7),0_(7) € (0,2m), respectively corresponding to wand

to w_, as solution of

(c —wi)d + wiab
wibh? + d?

—(c — w)wib + wiad
wib? + d? ’

sinfly = cosfy = — (4.20)

If both the positive roots wyand w_ of (4.16) exist then (4.10) gives two families of delays,
say
+ Oy +n2n _ 0_+n2r
T = — T =

n ) n Y

n € Np. (4.21)
Wy w_

20



At each delay 7,7 we have a couple of pure imaginary roots A = +iw, and at each delay
7, we have a couple of pure imaginary roots A = +iw_ and their direction for increasing
7 (i.e. if they are entering in the right or left half complex plane) is given by

3(rf) = sign {+VA} =1, (4.22)

and respectively by

d(, ) = sign {—\/K} =—1 (4.23)

Hence for increasing 7, crossing the delay value 7.7, the total multiplicity M (1) of the roots
in the right half complex plane increases of two, whereas crossing 7,7, M (1) decreases of
two units. These results are in agreement with those obtained in Section 4 of the paper by
Freedman and Kuang [5].
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