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1 Introduction

In the last decade, many mathematical models have been developed to describe the immuno-
logical response to infection with human immunodeficiency virus (HIV). See, for example,
11, 2,4,6, 15,32, 31, 33, 34, 40, 41, 47, 48, 49, 50, 52, 56, 60, 62], etc. For more references and
detailed mathematical analysis on some models, we refer to the survey papers by Kirschner
[30] and Perelson and Nelson [51].

HIV-1 targets, among others, the CD4" T lymphocytes, which are the most abundant
white blood cells of the immune system (referred to as helper T cells or CD41 T-cells). It is
thought that HIV-1, although attacking many different cells, wreaks the most havoc on the
CD4™" T-cells by causing their destruction and decline, and decreasing the body’s ability to
fight infection.

Assume that peripheral blood CD4 counts (generally 1000/mm?) are a good indicator
for CD4 densities in the body. When HIV-1 enters the body, it targets all cells with CD4%
receptors, including the CD4% T-cells. The gpl20 protein on the viral particle binds to
the CD4™" receptors on the CD4" T-cell and injects its core. After an intracellular delay
associated with reverse transcription, integration, and the production of capsid proteins, the
infected cell releases hundreds of virions that can infect other CD4" T-cells.

In 1989, Perelson [49] developed a simple model for the interaction between the human
immune system and HIV-1. Perelson, Kirschner and De Boer [50] extended Perelson’s model
and proved mathematically some of the model’s behavior. They observed that the model
exhibits many of the symptoms of AIDS seen clinically: the long latency period, low levels
of free virus in the body, and the depletion of CD4% T-cells. They defined the model by
considering four compartments: cells that are uninfected, cells that are latently infected, cells
that are actively infected and free virus. They described the dynamics of these populations
by a system of four ordinary differential equations.

There is precedent for studying in vitro cell-to-cell spread of HIV-1 (as well as that of
other viruses) since many features are easier to determine experimentally in tissue cultures
than in, for example, a more complex medium such as the bloodstream. Also, HIV-1 is
thought to be active in areas such as the lymph nodes and the brain where cell-to-cell spread
would be a much more important mode of infection than cell-free viral spread. In fact,
it has been reported (Dimitrov et al. [17] and Sato et al. [57]) that cell-to-cell spread of
virus is favored over infections with cell-free virus inocula. The data of Gummuluru et al.
[22] support the hypothesis that cell-to-cell spread of HIV-1 is the predominat route of viral
spread since viral replication in a system with rapid cell turnover kinetics depends on cell-
to-cell transfer of virus. See also Bailey et al. [4], Bajaria et al. [3], Chun [10], Finzi and
Siliciano [18], Haase et al. [23, 24], Philips et al. [53], Schacker et al. [58], etc.

In [60], Spouge et al. have studied HIV-1 cell-to-cell infection kinetics in tissue cultures in
terms of mathematical models and observed that the asymptotic behavior is similar to that of
a model representing cell-free viral spread. That is, in ordinary differential equations models,
under all realistic parameter ranges, the system tends toward an “infected equilibrium”, in



which healthy cells and infected cells co-exist.

Time delays of one type or another have been incorporated into biological models by many
authors, for example, Busenberg and Cooke 7], Cushing [14], MacDonald [39], Stépan [61]
and the references cited therein. In general, delay differential equations exhibit much more
complicated dynamics than ordinary differential equations since a time delay could cause
a stable equilibrium to become unstable and cause the populations to fluctuate. Recently,
in studying the viral clearance rates Perelson et al. [52] assumed that there are two types
of delays that occur between the administration of drug and the observed decline in viral
load: a pharmacological delay that occurs between the ingestion of drug and its appearance
within cells and an intracellular delay that is between initial infection of a cell by HIV-1
and the release of new virions. Herz et al. [26] assumed that cells become productively
infected 7 time units after initial infection. They reported that including an intracellular
delay did change the estimates of the viral clearance rate but did not change the productively
infected T cell loss rate. Tam [63] investigated the delay effect in a model which describes the
interaction between a replicating virus and host cells. Mittler et al. [42] assumed that the
intracellular delay was continuous and varied according to a gamma distribution and observed
dramatical changes in the estimates of viral clearance. Using the method of stages, Grossman
[19, 20] found that including a delay model for the death of infected cells resulted in different
conclusions about residual transmission of infection in the presence of drugs that effectively
reduce viral load. Nelson et al. [44, 45, 46] extended the development of delay models of HIV-
1 infection and treatment to more general cases of combination antiviral therapy that is less
than completely efficacious. Lloyd [38] observed that the models neglecting the intracellular
delay before virion production can lead to severe underestimates of the reproductive number
and to overly optimistic predictions of how efficacious treatment must be in order to prevent
the disease.

In this lecture, we first simplify the ODE model proposed by Perelson, Kirschner and
De Boer [50] by considering only three components: the uninfected CD4" T-cells, infected
CD4* T-cells, and free virus. The existence and stability of the infected steady state are
considered. We then incorporate a discrete delay to the model to describe the time between
infection of a CD4% T-cell and the emission of viral particles on a cellular level as proposed
by Herz et al. [26]. The resulting model is a system of three delay differential equations.
To determine the dynamics of the delay model, we study the transcendental characteristic
equation of the linearized system at the positive infected steady state and obtain analytic
conditions on the parameters under which the infected steady state is asymptotically stable
for all delay.

In the second part of this lecture, we consider the cell-to-cell spread of HIV-1 in tissue
cultures (in vitro) and model the intracellular eclipse phase by a gamma distribution, that
is, a distributed delay representing the lag between the time a cell becomes infected and
when it begins to infect other cells. The model is then described by a system of differential
equations with distributed delay. When the distribution takes the form of a delta function
at a positive number 7, the model becomes a system of differential equations with a discrete



delay. When 7 = 0, the model reduces to a system of ordinary differential equations (ODE)
considered by Spouge et al. [60).

Does the cellular eclipse phase affect the qualitative properties of the model? If so,
how? We try to answer these questions and find that in fact the cellular eclipse phase does
change the dynamics of the model: it can cause the model to lose its stability and induce
fluctuations in the cell concentrations. This result indicates that we must exercise caution
when extrapolating such a model’s qualities to the cell-free (or the in vivo) case.

2 Cell-to-Free Virus Spread

2.1 The ODE Model

We first reduce the dimension of Perelson, Kirschner and De Boer’s system by assuming
that all infected cells are capable of producing virus. Similar reduction has been done in
Kirschner and Webb [33], Perelson and Nelson [51], etc. The reduced ODE model is:

ar _ 5 _ prT +rT(1 — T—H) — k VT,

dt Tmaa}
b — BT -l (2.1.1)
4 = Nul —kVT = pyV.

where T'(t) represents the concentration of healthy CD4" T-cells at time ¢, I(t) represents
the concentration of infected CD4™" T-cells, and V (¢) the concentration of free HIV-1 at time
t.

To explain the parameters, we note that s is the source of CD4% T-cells from precursors,
wr is the natural death rate of CD4" T-cells, r is their growth rate (thus, r > pp in general),
and T,,,, 18 their carrying capacity. The parameter k; represents the rate of infection of T
cells with free virus and so is given as a loss term for both healthy cells and virus, since they
are both lost by binding to one another, and is the source term for infected cells. k] is the
rate at which infected cells become actively infected (the ratio kj/k; is the proportion of T
cells which ever become actively infected). pr is a blanket death term for infected cells, to
reflect the assumption that we do not initially know whether the cells die naturally or by
bursting. In addition, p, is the lytic death rate for infected cells. Since N viral particles
are released by each lysing cell, this term is multiplied by the parameter N to represent the
source for free virus (assuming a one-time initial infection). Finally, py is the loss rate of
virus.

In the absence of virus, the T cells population has a steady state value

Cr—pp 4 [(r = pr)? + 4T L2
Ty = o . (2.1.2)

max




Thus reasonable initial conditions for infection by free virus only are:
T(0) =T, 1(0)=0, V(0)="W. (2.1.3)

System (2.1.1) has two steady states: the uninfected steady state Ey = (75, 0,0) and the
(positive) infected steady state E = (T, 1,V), where
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I = ==, ~ B (2.1.4)
vV = et pr) D e —rT |
Tk rT+k1pr Tmaz)
Table 1—Variables and Parameters for Viral Spread
Parameters and Variables Values
Dependent Variables
T uninfected CD4" T-cell population size 1000/mm?
I infected CD4" T-cell density 0
% initial density of HIV-1 RNA 1073 /mm?
Parameters and Constants
J1%% natural death rate of CD4% T-cells 0.02/day
[y blanket death rate of infected CD4" T-cells 0.26/day
i lytic death rate for infected cells 0.24/day
wy  death rate of free virus 2.4/day
k1 rate CD41 T-cells become infected with virus 2.4 x 10~°mm3 /day
K} rate infected cells becomes active 2 x 10™5mm? /day
r growth rate of CD4" T-cell population 0.03/day
N number of virions produced by infected CD4% T-cells varies
T maximal population level of CD4™ T-cells 1500/mm?
s source term for uninfected CD4" T-cells 10/ (day)(mm?)
Derived Quantities
Ty CD4* T-cell population for HIV-negative persons 1000/mm?
We can see that NV is a bifurcation parameter. When
N < N,y = Pty ¥ Fido) (2.1.5)

ki pTo

the uninfected steady state F is stable and the infected steady state F does not exist
(unphysical). When N = N, the uninfected and infected steady states collide and there
is a transcritical bifurcation. When N > N,..;;, FEy becomes unstable and E exists.
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To discuss the local stability of the positive infected steady states E for N > N_.;, we
consider the linearized system of (2.1.1) at E. The Jacobian matrix at F is given by

~(ur+ " LV —r) — L kT
A= kv —pr kT
—k1V N/,Lb —(le + ,UV)
Denote _ _
20+ 1 —
M = pp + % +kV —r. (2.1.6)

Then the characteristic equation of the linearized system is
N+ a A%+ (ag + ag) X + (az + as) = 0, (2.1.7)
where

a; = M["‘HV"‘le—i_M*
ay = M(ET + pr+ py) + pr(py + ki T) = 2TV,
Tuvv

az = KT(kiNuV + — M N), (2.1.8)

max

ag = kllT( _Nub)v

as = M/.L[(MV + le) — M[k%W

We should point out that writing the coefficients in equation (2.1.7) as as + a4 and az +
as is for the sake of convenience and comparison, since the characteristic equation of the
corresponding delay equation in next section has all five als as coefficients.

By the Routh-Hurwitz criterion, it follows that all eigenvalues of equation (2.1.7) have
negative real parts if and only if

a; >0, az+as >0, aj(ag +ay) — (a3 +as) > 0. (2.1.9)

Proposition 2.1 The infected steady state F is asymptotically stable if the inequalities in
(2.1.9) are satisfied.

For the parameter values given in Table 1, N,,.;; = 131.3. The number of infectious viruses
released, N, varies in the literature. It has been suggested to be hundreds (see Haase et al.
[24] and Cavert et al. [9]) and even thousands (see Hockett et al. [27]). We first take
N = 500, then

a1 = 2.71, as = 0.7418, a3 = —0.0003, as = —0.6238, a5 = 0.0273 (2.1.10)



and
as +as = 0.027 > 0, ai(az + as) — (as + as) = 0.2928. (2.1.11)

Thus, all conditions in (2.1.9) are satisfied and the infected steady state E = (260.7,42.5, 1768.2)
is asymptotically stable. Numerical simulations show that trajectories of system (2.1.1) ap-
proach to the steady state (Figure 2.1). Increasing the N value will decrease the numbers of
uninfected CD4% T-cells and virus and increases the number of infected cells substantially,
but does not change the stability of the steady state. With N = 1000 the steady state
becomes E = (130.2,34.9,3480.1), which is asymptotically stable.
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150 -
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t - times (days)
\/
14000
12000
10000
8000
6000
4000
2000
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Figure 2.1: The ODE model with N = 500. All other parameter values are given in Table 1.



2.2 The DDE Model

In this section, we introduce a time delay into system (2.1.1) to represent the viral eclipse
phase. The model is given as follows:

AL _ o () + T (1 — LA IOy iy,

% Tmax
A — BT -Vt —1) - (), (2.2.1)
G = Nwl(0) = kTOV() — mV ()

under the initial values
T(H) - TOa [(O) - 07 V(H) - VE)a 9 € [_7-7 O}

All parameters are the same as in system (2.1.1) except that the positive constant 7 represents
the length of the delay in days.

We find, again, an uninfected steady state Ey = (15, 0,0) and an infected steady state
E = (T,1,V), where T, T and V are the same as in section 2.1, given by (2.1.4). Since the
uninfected steady state Ej is unstable when 7 = 0 and N > N,.;;, incorporation of a delay
will not change the instability. Thus, Ej is unstable if N > N..;, which is also the feasibility
condition for the infected steady state .

To study the stability of the steady states F, define

x(t)=Tt)-T, yt)=1I1t)—-1, =2(t)=V({)-V.

Then the linearized system of (2.2.1) at E is given by

dr _ 2F LDV - r)a(t) - floy(t) - kiT2(2),
% = kVzt—71)— pry(t) + kT2t — 1), (2.2.2)
L — g Va(t) + Nuy(t) — (kT + )2 (t).

We then express system (2.2.2) in matrix form as follows:

g [ =0 z(t) a(t — )
o v | =A| v |+ A wt-T) |
2(t) z(t) z(t —7)

where A; and As are 3 x 3 matrices given by

-M -7 kT 00 0
Al = 0 —Hr 0 y AQ = k{V 0 kllT ,
0

—k?lv N[,Lb —(k)lT -+ /,Lv)
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where M is defined by (2.1.6). The characteristic equation of system (2.2.2) is given by:
A()\) = |)\I — Al — 6_/\TAQ| == O,

that is,
A4 a1 A% 4 ao\ + aze M+ aghe N + a5 =0, (2.2.3)

where a;(i = 1,---.,5) are defined in (2.2.8).

It is known that F is asymptotically stable if all roots of the corresponding characteristic
equation (2.2.3) have negative real parts (see Bellman and Cooke [7]). However, compared
with the polynomial characteristic equation (2.1.7) for the ODE model, equation (2.2.3) is
much more difficult to deal with. First, it is a transcendental equation and has infinitely
many eigenvalues. Second, since it is transcendental the classical Routh-Hurwitz criterion
cannot be used to discuss equation (2.2.3) anymore. Third, though there are some general
tests (see Stépéan [61], for example) that can be used to determine when all eigenvalues of the
transcendental equations have negative real parts, applying such a general test to specific
transcendental equations is very complicated and far from trivial (Culshaw [11]).

We shall study the distribution of the roots of the transcendental equation (2.2.3) ana-
Iytically. Recall that for the ODE model (2.1.1) the infected steady state E is stable for the
parameter values given in Table 1. Our starting point is to assume that the steady state of
the ODE model (2.1.1) is stable, then we shall derive conditions on the parameters to ensure
that the steady state of the delay model is still stable.

To proceed, we consider equation (2.2.3) with 7 = 0, that is equation (2.1.7), and assume
that all roots of equation (2.1.7) have negative real parts. This is equivalent to the assumption
(2.1.9). By Rouché’s Theorem (Dieudonné [16], Theorem 9.17.4) and the continuity in 7, the
transcendental equation (2.2.3) has roots with positive real parts if and only if it has purely
imaginary roots. We shall determine if (2.2.3) has purely imaginary roots, from which we
then shall be able to find conditions for all eigenvalues to have negative real parts.

Denote A = n(7) + iw(7)(w > 0) the eigenvalue of the characteristic equation (2.2.3),
where 1(7) and w(7) depend on the delay 7. Since the equilibrium E of the ODE model is
stable, it follows that 1(0) < 0 when 7 = 0. By continuity, if 7 > 0 is sufficiently small we still
have n(7) < 0 and F is still stable. If (1) = 0 for certain value 75 > 0 (so that A = iw(7) is
a purely imaginary root of (2.2.3)), then the steady state E loses its stability and eventually
becomes unstable when 7(7) becomes positive. In other words, if such an w(7m) does not
exist, that is, if the characteristic equation (2.2.3) does not have purely imaginary roots for
all delay, then the steady state E is always stable. We shall show that this indeed is true for
the characteristic equation (2.2.3).

Clearly, iw(w > 0) is a root of equation (2.2.3) if and only if

—iw® — ayw? + iagw + az(coswT — isinwT) + auw(sinwr +icoswT) +as =0.  (2.2.4)
Separating the real and imaginary parts, we have
aw® —as = a3coswT + auw sinwr, (2.2.5)

W —asw = —assinwr + ayw cos wT. .2.6)



Adding up the squares of both equations, we obtain
Wl + (a? — 2az)w* + (a3 — 2a1a5 — at)w? + (a2 — a3) = 0. (2.2.7)

Let

z=w’ a=a]—2a, B=a,—2a0a—aj, Y=a:— a3

Then equation (2.2.7) becomes
h(z) = 2° + a2z + Bz + v = 0. (2.2.8)

Since 7 = a2 — a3 > 0 for the parameter values given in Table 1, we assume that v > 0
and have the following claim.

Lemma 2.2 If
v >0 (2.2.9)

and

B >0, (2.2.10)

then equation (2.2.8) has no positive real T00ts.

In fact, notice that

M =322 4+ 2az + .
dz
Set
32° + 2az + 3 = 0. (2.2.11)

Then the roots of equation (2.2.11) can be expressed as

—a++a?—30
3 :

If B> 0, then a? — 383 < a?; that is, /a2 — 383 < a. Hence, neither z; nor z is positive.
Thus, equation (2.2.11) does not have positive roots. Since h(0) = v > 0, it follows that the
equation (2.2.8) has no positive roots.

Lemma 2.2 thus implies that there is no w such that iw is an eigenvalue of the charac-
teristic equation (2.2.3). Therefore, the real parts of all eigenvalues of (2.2.3) are negative
for all delay 7 > 0. Summarizing the above analysis, we have the following proposition.

(2.2.12)

21,2 =

Proposition 2.3 Suppose that
(Z) a; >0, ag+as >0, al(ag +CL4) — (CL3 +CL5) > 0;

(ii) v >0 and B > 0.
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Then the infected steady state E of the delay model (2.2.1) is absolutely stable; that is, E is
asymptotically stable for all T > 0.

Notice that for given parameter values in Table 1 all conditions in Proposition 2.3 are
satisfied. Thus, the infected steady state E is asymptotically stable for all 7 > 0. Take
N = 500,7 = 1, and other parameter values given in Table 1, numerical simulations show
that the infected steady state £ = (260.7,42.5, 1768.2) is asymptotically stable (Figure 2.2).
Compared with Figure 2.1, we can see that though the delay causes transient oscillations in
the components, the steady state E is still stable.

s T T T T T T T
1400 B
1200 g
1000 =
800 B
600 g
400 - B
200 + R
o 50 100 150 200 250 300 350
t - times (days)
1
500
400 -
300 +
200 |-
100 -
o . . ; . . . .
o 50 100 150 200 250 300 350
t - times (days)
25000
20000
15000
10000
5000
o 50 100 150 200 250 300 350

t - times (days)

Figure 2.2: The delay model with 7 =1 and N = 500. All other parameter values are given
in Table 1.

Remark 2.4 Proposition 2.3 indicates that if the parameters satisfy conditions (i) and (ii),
then the steady state of the delay model (2.2.1) is asymptotically stable for all delay values;
that is, independent of the delay. However, we should point out that if the conditions
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(condition (ii)) in Proposition 2.2 are not satisfied, then the stability of the steady state
depends on the delay value and the delay could even induce oscillations.

For example, if (a) v < 0, from equation (2.2.8) we have h(0) < 0 and lim,_,, h(z) = oco.
Thus, equation (2.2.8) has at least one positive root, say zy. Consequently, equation (2.2.7)
has at least one positive root, denoted by wy. If (b) 8 < 0. Then, v/a? — 33 > a. By (2.2.12),
21 = 3(—a++v/a?=33) > 0. It follows that equation (2.2.8), hence equation (2.2.7) has a
positive root wy. This implies that the characteristic equation (2.2.3) has a pair of purely
imaginary roots =+iwy.

Let A(7) = n(7)+1iw(T) be the eiganvalue of equation (2.2.3) such that n(7y) = 0, w(1) =
wp. From (2.2.5)-(2.2.6) we have

Tj = — arccos
Wo

4 — 2 — 2j
awg + (CLlCL?, a2a4)w0 CL3CL5> + j’/T’ ] — 0’ 1’ 2, e

a3 + aiwid Wo
Also, we can verify that the following transversality condition

d d

ZReA(T)],_y = ()], > 0.

dr 7= dr

holds. By continuity, the real part of A(7) becomes positive when 7 > 75 and the steady
state becomes unstable. Moreover, a Hopf bifurcation occurs when 7 passes through the
critical value 7y (see Hassard, Kazarinoff and Wan [25]).

The above analysis can be summarized into the following proposition.

Proposition 2.5 Suppose that
(i) a1 >0, az+as >0, ay(ag + ay) — (a3 + as) > 0.
If either
(i) v <0
or
(iii) v >0 and 5 <0
is sastisfied, then the infected steady state E of the delay model (2.2.1) is asymptotically
stable when T < 19 and unstable when T > 1y, where

1 <a4w§ + (a1a3 — agay)wd — a3a5>

To = — arccos
Wo ai + ajwd

When ™ = 19, a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcates from
E as 7 passes through the critical value .

Proposition 2.5 indicates that the delay model could exhibit Hopf bifurcation at certain
value of the delay if the parameters satisfy the conditions in (ii) and (iii). However, for the
parameter values given in Table 1, neither (ii) nor (iii) holds.
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3 Cell-to-Cell Infection

3.1 The General Model

Let C(t) represent the concentration of healthy cells and I(t) be the concentration of infected
cells. We consider the following system modeling the interaction of the healthy and infected

cells:
48 — roc() (1 - L) o),

dl _ /ﬁ/ C(w) I (w)F(t — w)du — prl(t),

where r¢ is the effective reproductive rate of healthy cells (the term is the total reproductive
rate for healthy cells r minus the death rate for healthy cells ), Cyy is the effective carrying
capacity of the system, k; represents the infection of healthy cells by the infected cells in a
well-mized system, k}/k; is the fraction of cells surviving the incubation period, p; is the
death rate of the infected cells. The interpretation of the variables and parameters and the
values of the parameters are given in Table 2.

The initial values of system (3.1.1) are

C(s) = o(s) 20, I(s)=1(s) 20, s€(=00,0]

(3.1.1)

where ¢ and 1 are continuous functions on (—oo,0).

We assume that the cells, which are productively infectious at time t, were infected u
time units ago, where u is distributed according to a probability distribution F'(u), called
the delay kernel. Throughout this paper, we use the family of generic delay kernels of the
form il

F(u) = @ d e ™

n!
where a > 0 is a constant and n > 0 is an integer. According to MacDonald [39], n is called
the order of the delay kernel and the average delay is defined by

1
7':/ ulF'(u n+

In the literature, the kernels with n =0 and n =1, i.e.,

F(u) =ae ™ and F(u) = o*ue ™,

are called the weak and strong kernels, respectively, and are frequently used in biological
modeling. Such kernels were also used in mathematical models of HIV-1 infections by Mittler
et al. [42].

The system (3.1.1) has three equilibria: the trivial equilibrium £y, = (0,0), the healthy
equilibrium E; = (Cyy,0), and the infected equilibrium E = (C, T), where

U:& T:TC(k/ICm_/'LI)
]{?/Ij k}(k;C’m +Tc)
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Table 2 — Variables and Parameters for Cell-to-Cell Spread

Parameters and Variables Values Ref.
Dependent Variables
C' concentration of healthy cells 5x 10°/mL  [60]
I concentration of infected cells 500/mL  [60]
Parameters and Constants
Ch  effective carrying capacity of healthy cells 2x10%/mL  [35]
kr  rate constant for cell-to-cell spread 2x107%/mL/day [60]
r healthy cell reproductive rate 0.7/day [17]
ie  death rate of healthy cells 0.02/day  [50]
pur  death rate of infected cells 0.3/day [37]
Derived Quantities
re (=1 — pe) effective healthy cell reproductive rate 0.68/day  [60]
Ky k}/k; fraction of cells surviving the incubation period varies

Notice that system (3.1.1) has some special cases. When

the delta function, we have the following ordinary differential equations (ODE):

dC _ CC(t)<1 _ %ﬂ) — B I(1)C(1),

dar =" o (3.1.2)
L — k1)o(t) = prl ().

The initial conditions are

where Cjy and [, are constants.
When the kernel takes the following form

F(u)=6(u—r1),

where 7 > 0 is a constant, then system (3.1.1) becomes the following delay differential
equations (DDE) with a discrete delay:

4¢ — roc() (1 - L) 1o,

AL — 1(t —r)O(t — 1) — prd (1),

(3.1.3)
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The initial conditions are
C(s)=o(s) >0, I(s)=1(s) >0, sel[-T1,0],

where ¢ and 1 are continuous functions on [—7,0]. Note that the ODE model (3.1.2) is also
a special case of the DDE model (3.1.3) with 7 = 0.

In the following sections, we will consider the ODE model (3.1.2), the model (3.1.3) with
a discrete delay, and the following distributed model with a weak kernel

dC _ ,.0(t) (1 _ %&;I_@)) — ki C(t)I(1),

dt [
h , (3.1.4)
d_ / ae= =0 O () T (w)du — p (1),

for which the initial values are

where ¢ and 1 are continuous functions on [—oo, 0].

3.2 The ODE Model

In this section, we discuss the ODE model (3.1.2). Notice that the system has the same three
equilibria as the general system (3.1.1) has: the trivial equilibrium Ey = (0, 0), the healthy
equilibrium E; = (Cyy,0), and the infected equilibrium £ = (C, ). Stability analysis of
these three equilibria reveals two possible scenarios:

(i) When Oy < ‘,:—; (which, under parameter ranges given, usually is not the case), the
healthy cells predominate and infected cells die exponentially. In this case Ej is unstable, F;
is asymptotically stable, and E is unstable. We note that the condition for E; to be stable
is that k;r < 1.5 x 1077, or that less than 7.5% of infected cells survive the incubation period
to become infectious. In this case F; is asymptotically stable. We note, however, that in
reality it is unlikely that so few cells would survive latency, and that the following case is
more likely.

(i) When ’,j—i < Cn < &5, healthy cells and infected cells co-exist. This would correspond
to the case where, in models representing cell-free viral spread, we have an endemically
infected steady state. This means that infection is present but it does not grow out of
bound, and levels of healthy cells do not crash to zero. In this case Fjy remains unstable,
F; is now also unstable and F has become asymptotically stable. A transcritical bifurcation
occurs at Cpy > pr/k}, corresponding to k7 = 1.5 x 10~7. With parameter values given in
Table 2, numerical simulations show that the positive equilibrium F is asymptotically stable
(see Figure 3.1).

15



<
1.8e+06

1.6e+06

1.4e+06

1.2e+06

le+06

800000

600000

400000

200000

time

1

600000 |- -
500000 [~ -
400000 -

300000 [~ -

200000 |- -

100000 -

o 50 100 150 200
time

Figure 3.1: C'(t) and I(t) converge to the steady state values.

In the (C, I)—plane, trajectories spiral towards the equilibrium (see Figure 3.2).
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Figure 3.2: The infected equilibrium is asymptotically stable.

The equilibrium F is, in fact, globally stable for < Cuy < oo We can see this by

applying Liapunov’s theorem. We choose the following ILiapunov function:
—. C — I -
V(C, 1) = 01( ~Tlog 5 +C - c) +02< ~Tlog 2 +1 - 1) (3.2.1)

This function is clearly positive if we choose ¢, ¢co to be positive constants, and it equals
zero for £ = E. We have

v dojdt, . . dljdt,. -
o = oG (O =0t (=T
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_ — k,Ch, _ _
e Be) IO PR el A2 Y01 76 S YO o}
Cur Cur
Assume that Cy; < 2_? and choose ¢; = k7, ¢y = (TC%A’{CM) > 0. We have
av . ,[TC —\2
Friniaee (C-0C) <0,

which implies that the equilibrium E is globally asymptotically stable for <Oy < %11
I
We thus have proved

Proposition 3.1 If
Hr rc
— <Oy < —,
K M ks

then the infected equilibrium E of the ODE model (3.1.2) is globally asymptotically stable.

(3.2.2)

3.3 The Discrete Delay Model

Now we consider the delay differential equation model with a discrete delay, namely, system
(3.1.3). Notice that the model has the same equilibria given in section 3.2, Ey = (0,0),
El = (Cjw, 0), and E = (U, 7)

We are interested in the stability of the infected equilibrium E. The characteristic equa-
tion of the linearized system is given by:

AN) = N+ pA+7+ (sA+q) e =0, (3.3.1)
where
_ wr (K Cyr + 7o) _, (K'Chr — 2u1) . rou? o
p k}O]\/[ ) q C/’I’I k/IC]\l I k}CM ) H’I‘

Characteristic equations of this form have been extensively examined in [55]. Certain condi-
tions on the coefficients p, g, r and s will ensure either all roots of the characteristic equation
have negative real part or at least one root has positive real part. The results of interest to
us are as follows:

Lemma 3.2 Consider a characteristic equation of the form (3.5.1).

(i) If p+s >0 and g+ 1 > 0, then all roots of the characteristic equation have negative
real part in the absence of delay.

(ii) If p+s >0, qg+r >0, and either (s> —p>+2r <0 and r*> —q* > 0) or (s> —p?+2r)? <
4(r? — ¢*), then all roots of the characteristic equation have negative real part for all
delay values, that s, the equilibrium is absolutely stable.
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(iii) Ifp+s>0,q+r >0, and either r* —q* < 0 or (s> —p*+2r > 0 and (s* —p* +2r)* =
4(r* — ¢?)), then there is a critical value Ty defined by:

1 ;=) = pswi
Tp = — arccos q(w+2 ;) ZQ)SMJF, (3.3.2)
Wy STWi + q
where wy satisfies
2w3 = (82— PP+ 2r) /(2 — P2+ 202 — 402 — @), (3:3.3)

when T € [0,79), all roots of the characteristic equation have negative real part; when
T = Ty, there is a pair of purely imaginary roots tiw,; and when T > 19, the charac-
teristic equation has at least one root with positive real part.

We will use the above results to analyze the stability of the infected equilibrium. Checking
the first two conditions, we note that p 4+ s > 0 holds if

I(k}CM +7rc B 1) <0
kyChr
which is obviously the case, since r¢ is positive. The second condition, ¢ + r > 0, holds
whenever k7 > u;/Cyr, which is exactly the condition for the feasibility of the interior
equilibrium in the ODE model.
Consider the third condition for the characteristic equation to have only roots with neg-
ative real part. For this to be true, we require that both of the following conditions hold:

r? —q¢* >0, (3.3.4)
s> —p*+2r < 0. (3.3.5)

The second condition holds for all values of parameters. However, the first condition is
somewhat more interesting. Notice that for r? — ¢ > 0, we require the following inequality
to be satisfied:
C2 k7 — 4Ok + 3u7 < 0.
This is true when
K
Cu

We summarize the conditions on stability as follows:

<kp < —.

Proposition 3.3 The positive equilibrium E of system (4.1) is asymptotically stable for all
delay T when
K /
—— <k; <
Cu !

e

. 3.3.6
" (3.3.6)
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Thus, there is a region of absolute stability for the infected equilibrium. Notice that this
region corresponds to only between 7.5% and 22.5% of infected cells surviving the latent
period. The obvious question to ask is, what happens when more cells survive (which, in
realistic situations, is likely)?

We note that for £} > 3u;/Chyr, 7?2 — ¢* < 0, and delay-induced instability may occur
because the characteristic equation has a root with positive real part. Define

A= (K Car)? = ) (K Car)? = 3ps).
We summarize the conditions for bifurcation as follows:

Proposition 3.4 Assume that

3pr
Ky > —. 3.3.7
I OM ( )
Then there is a critical value 1, given by
1 1 {(k/[CJM(TC’ +pr) = repr)A = 2reprkiCr (B Char — 2p01)
Tp = —— arccos - - 5 ,
Wy k[CM /L[A + 27"0(]{310]\4 — 2”[)
where {
Wy = m\/%ou[@fl —Tolr),

such that the infected equilibrium E of system (4.1) is asymptotically stable when T € [0, 1)
and unstable when T > 9. A Hopf bifurcation occurs at E when T = 1y; that is, a family of
periodic solutions bifurcates from E when T passes through the critical value 7.

Notice that 7y depends on £. In the following, we will see that for larger values of &/, the
critical value 7y gets smaller, whereas the periods and amplitudes of the oscillatory solutions
get larger.

Using values of k& corresponding to 25%, 50%, 75% of cells surviving incubation, we obtain
the following results for the critical value of the delay.

Suppose that 25% of infected cells survive incubation. This corresponds to a value of
Ky = 5x 1077, In this case, using the formulas given above, we obtain a critical value of
the delay to be 7y = 6.23 days. Since the actual incubation period is one day, we do not
expect this to be of biological significance. Numerical simulations show that both C' and [
are stable for realistic values of all other parameters, when k} =5 x 1077,

Now suppose that half the infected cells survive incubation. In this case, the critical
value for 7y obtained analytically is 0.82 days, which is of biological significance. Numerical
simulations show that for k7 = 107% and 7 = 0.4 < 79, the components C(¢) and I(t) are
converging to the steady state values as time increases (see Figure 3.3).
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Figure 3.3: C(t) and I(t) converge to the steady state values when 7 < 79, here 7 = 0.4.

In the (C, I)—plane, trajectories spiral towards the equilibrium (see Figure 3.4).
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Figure 3.4: The infected equilibrium is asymptotically stable when 7 = 0.4 < 7.

When the delay is increased to 7 = 1 > 7, the components C(¢) and I(¢) oscillate with
increasing time (see Figure 3.5).
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Figure 3.5: The oscillations of C' and I vs. time, 7 = 1

In the (C, I)—plane, trajectories are approaching the periodic solution as the time in-
creases (see Figure 3.6).
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Figure 3.6: There is an orbitally asymptotically stable periodic solution when 7 =1 > 7.

If 75% of the infected cells survive, numerical analysis shows that when £} is smaller the
oscillations are more frequent (i.e., the periods are shorter) and the amplitudes are smaller.
Thus, increasing the value of £} will increase the periods and the amplitudes of the periodic
solutions. There appears to be an interplay between the value of the delay and the fraction of
infected cells surviving incubation. Specifically, the more cells survive incubation, the smaller
the critical value of the delay must be to induce instability of the interior equilibrium.
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3.4 The Distributed Delay Model

Finally we consider the distributed delay model with a weak kernel, that is, system (3.1.4).
To study the stability of the infected equilibrium, let

X(t) = / " e 0O Iu)du. (3.4.1)

—0o

Then system (3.1.4) is equivalent to the following ODE system

48 — reo() (1 - LU D) — jomi),

G =MX) — el (1), (34.2)
X — aC(t)I(t) — aX(1).
The positive steady state of system (3.4.2) is given by £ = (C,1,X), where X = &7,
— I
Linearizing the system at the steady state E, we obtain the characteristic equation
N+ ar (@) A2 + ax() X + as(a) = 0, (3.4.3)
where
a(a) = =20+ + o,
CM
HITC =
as(a) = a(==0C)+ C,
2(0) = a(zo0) + A
az(a) = a(k;+ 1.
s(a) o CM)#I

By Routh-Hurwitz criteria, the positive steady state F is asymptotically stable if and only
if

aj(a) >0, asz(a)>0 and a(a)az(a)—az(a) >0 (3.4.4)
for all values of . If there is an oy > 0 such that
a1(ao)az(ag) = az(ao), (3.4.5)

then the characteristic equation (3.4.3) becomes
(A + a1(ap)][A* + az(ap)] = 0,
which has roots
Al = —al(ao) < 0, )\273 =4 CLQ(O[Q).

If the transversality condition
dRe)\Q,g

da

£0 (3.4.6)

a=ag
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holds, then a Hopf bifurcation occurs at £/ when « passes through the critical value og. After
some calculations, we have

dRB)\g’g 1 d

B0 oo~ Aal(@) T as(@)] da 1 (@)%2(2) = 3] lomco.

Summarizing the above analysis, we have the following results.

Proposition 3.5 If conditions in (3.4.4) are satisfied, then the positive steady state E of
system (3.1.4) is asymptotically stable. If there is a critical value ay > 0 such that conditions
(3.4.5) and

d

Tala(a)az(a) = as(@)]lazae # 0

are satisfied, then a Hopf bifurcation occurs at E; that is, a family of periodic solutions
bifurcates from FE when o passes through the critical value o).

Notice that for the weak kernel ae™®", the average delay is defined as 7 = é The above
analysis demonstrates that when 7 is small (i.e. when « is large), the steady state is stable.
When 7 is sufficiently large (i.e. as o becomes smaller), the steady state becomes unstable
and a Hopf bifurcation occurs. That is, a periodic solution bifurcates from the steady state
when « passes a critical value ay.

With parameter values given in Table 2 and a value of k7 = 1.5 x 107, ay ~ 1.95.
Numerical simulations show that the steady state £ = (C, I) is asymptotically stable when
a > ap (le., T < Tp)(see Figure 3.7).
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Figure 3.7: C'(t) and I(t) converge to the steady state values when o > «, here a = 5.
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In the (C, I)—plane, trajectories spiral towards the equilibrium (see Figure 3.8).
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Figure 3.8: The infected equilibrium is asymptotically stable when a@ =5 > «y.

When a = aq (i.e., T = ), the steady state £ loses its stability and Hopf bifurcation
occurs. When a < ag (i.e., 7 > 7), the steady state £ becomes unstable and there is a

periodic solution surrounding E (see Figures 3.9 and 3.10).
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Figure 3.9: C(t) and I(t) oscillate about the steady state values when a < ag, here a = 1.5.
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Figure 3.10: There is a periodic solution when a = 1.5 < ay.

Similarly, we can analyze system (3.1.1) with a strong kernel F(u) = a?ue™®" obtain
similar results on stability and bifurcation of the model.
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